\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic orbits in the Kepler-Heisenberg problem

Abstract Related Papers Cited by
  • One can formulate the classical Kepler problem on the Heisenberg group, the simplest sub-Riemannian manifold. We take the sub-Riemannian Hamiltonian as our kinetic energy, and our potential is the fundamental solution to the Heisenberg sub-Laplacian. The resulting dynamical system is known to contain a fundamental integrable subsystem. Here we use variational methods to prove that the Kepler-Heisenberg system admits periodic orbits with $k$-fold rotational symmetry for any odd integer $k\geq 3$. Approximations are shown for $k=3$.
    Mathematics Subject Classification: 53C17, 37N05, 37J45, 70H12, 70H06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin-Cummings, 1978.

    [2]

    A. Albouy, Projective dynamics and classical gravitation, Regul. Chaotic Dyn., 13 (2008), 525-542. arXiv:math-ph/0501026v2.doi: 10.1134/S156035470806004X.

    [3]

    V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 1978.

    [4]

    D. Barilari, U. Boscain and R. Neel, Small time heat kernel asymptotics at the sub-Riemannian cut locus, Journal of Differential Geometry, 92 (2012), 373-416.

    [5]

    G. Bliss, The problem of Lagrange in the calculus of variations, American J. Math., 52 (1930), 673-744.doi: 10.2307/2370714.

    [6]

    O. Bolza, Calculus of Variations, $2^{nd}$ edition, Chelsea, 1960.

    [7]

    R. W. Brockett, Control theory and singular Riemannian geometry, in New Directions in Appl. Math., (eds. P.J. Hilton and G.S. Young), Springer-Verlag, (1982), 11-27.

    [8]

    A. Chenciner and R. Montgomery, A remarkable periodic solution of the three body problem in the case of equal masses, Annals of Math., 152 (2000), 881-901.doi: 10.2307/2661357.

    [9]

    F. Diacu, E. Perez-Chavela and M. Santoprete, The n-body problem in spaces of constant curvature. Part I: Relative equilibria, Journal of Nonlinear Science, 22 (2012), 247-266.doi: 10.1007/s00332-011-9116-z.

    [10]

    G. Folland, A fundamental solution for a subelliptic operator, Bulletin of the AMS, 79 (1973), 373-376.doi: 10.1090/S0002-9904-1973-13171-4.

    [11]

    I. M. Gelfand and S. V. Fomin, Calculus of Variations, Dover, 1963.

    [12]

    W. B. Gordon, A minimizing property of Keplerian orbits, American J. Math., 99 (1977), 961-971.doi: 10.2307/2373993.

    [13]

    P. Griffiths, Exterior Differential Systems and the Calculus of Variations, Birkhäuser, 1983.

    [14]

    N. I. Lobachevsky, The new foundations of geometry with full theory of parallels, in Collected Works, II (1949), 1835-1838, (Russian), GITTL, Moscow.

    [15]

    R. Montgomery, A Tour of Subriemannian Geometries, AMS, 2002.

    [16]

    R. Montgomery and C. Shanbrom, Keplerian dynamics on the Heisenberg group and elsewhere, to appear in Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Institute Communications series.

    [17]

    R. Palais, The principle of symmetric criticality, Commun. Math. Phys, 69 (1979), 19-30.doi: 10.1007/BF01941322.

    [18]

    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, 1962.

    [19]

    C. Shanbrom, Two Problems in Sub-Riemannian Geometry, Ph.D thesis, UC Santa Cruz, 2013.

    [20]

    L. C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, $2^{nd}$ edition, Chelsea, 1980.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return