September  2014, 6(3): 319-333. doi: 10.3934/jgm.2014.6.319

Discriminantly separable polynomials and quad-equations

1. 

The Department of Mathematical Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080, United States

2. 

Faculty for Traffic and Transport Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia

Received  April 2013 Revised  July 2014 Published  September 2014

We classify the discriminantly separable polynomials of degree two in each of three variables, defined by a property that all the discriminants as polynomials of two variables are factorized as products of two polynomials of one variable each. Our classification is based on the study of structures of zeros of a polynomial component $P$ of a discriminant. This classification is related to the classification of pencils of conics in a delicate way. We establish a relationship between our classification and the classification of integrable quad-equations which has been suggested recently by Adler, Bobenko, and Suris.
Citation: Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319
References:
[1]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach,, Commun. Math. Phys., 233 (2003), 513.   Google Scholar

[2]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Discrete nonlinear hiperbolic equations. Classification of integrable cases,, Funct. Anal. Appl, 43 (2009), 3.  doi: 10.1007/s10688-009-0002-5.  Google Scholar

[3]

V. E. Adler, A. I. Bobenko and Yu. B. Suris, Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings,, Comm. Anal. Geom., 12 (2004), 967.  doi: 10.4310/CAG.2004.v12.n5.a1.  Google Scholar

[4]

A. I. Bobenko and Yu. B. Suris, Integrable noncommutative equations on quad-graphs. The consistency approach,, Lett. Math. Phys., 61 (2002), 241.  doi: 10.1023/A:1021249131979.  Google Scholar

[5]

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs,, Int. Math. Res. Not., (2002), 573.  doi: 10.1155/S1073792802110075.  Google Scholar

[6]

V. Buchstaber, n-valued groups: Theory and applications,, Moscow Mathematical Journal, 6 (2006), 57.   Google Scholar

[7]

V. M. Buchstaber, Functional equations, associated with addition theorems for elliptic functions, and two-valued algebraic groups,, Russian Math. Surv., 45 (1990), 213.  doi: 10.1070/RM1990v045n03ABEH002361.  Google Scholar

[8]

V. M. Buchstaber and V. Dragović, Two-valued groups, Kummer varieties and integrable billiards,, preprint, ().   Google Scholar

[9]

V. M. Buchstaber and S. P. Novikov, Formal groups, power systems and Adams operators,, Mat. Sb. (N. S), 84(126) (1971), 81.   Google Scholar

[10]

V. M. Buchstaber and A. P. Veselov, Integrable correspondences and algebraic representations of multivalued groups,, Internat. Math. Res. Notices, 8 (1996), 381.  doi: 10.1155/S1073792896000256.  Google Scholar

[11]

G. Darboux, Principes de Géométrie Analytique,, Gauthier-Villars, (1917).   Google Scholar

[12]

V. Dragović, Poncelet-Darboux curves, their complete decomposition and Marden theorem,, Int. Math. Res. Notes, 2011 (2011), 3502.  doi: 10.1093/imrn/rnq229.  Google Scholar

[13]

V. Dragović, Generalization and geometrization of the Kowalevski top,, Communications in Math. Phys., 298 (2010), 37.  doi: 10.1007/s00220-010-1066-z.  Google Scholar

[14]

V. Dragović and K. Kukić, New examples of systems of the Kowalevski type,, Regular and Chaotic Dynamics, 16 (2011), 484.  doi: 10.1134/S1560354711050054.  Google Scholar

[15]

V. Dragović and K. Kukić, Systems of the Kowalevski type and discriminantly separable polynomials,, Regular and Chaotic Dynamics, 19 (2014), 162.  doi: 10.1134/S1560354714020026.  Google Scholar

[16]

V. Dragović and M. Radnović, Poncelet Porisms and Beyond,, Springer, (2011).  doi: 10.1007/978-3-0348-0015-0.  Google Scholar

[17]

V. Dragović and M. Radnović, Billiard algebra, integrable line congruences and DR-nets,, J. Nonlinear Mathematical Physics, 19 (2012).  doi: 10.1142/S1402925112500192.  Google Scholar

[18]

V. V. Golubev, Lectures on the Integration of Motion of a Heavy Rigid Body Around a Fixed Point,, Gostechizdat, (1953).   Google Scholar

[19]

S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.  doi: 10.1007/BF02592182.  Google Scholar

[20]

J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry,, Clarendon Press, (1998).   Google Scholar

show all references

References:
[1]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach,, Commun. Math. Phys., 233 (2003), 513.   Google Scholar

[2]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Discrete nonlinear hiperbolic equations. Classification of integrable cases,, Funct. Anal. Appl, 43 (2009), 3.  doi: 10.1007/s10688-009-0002-5.  Google Scholar

[3]

V. E. Adler, A. I. Bobenko and Yu. B. Suris, Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings,, Comm. Anal. Geom., 12 (2004), 967.  doi: 10.4310/CAG.2004.v12.n5.a1.  Google Scholar

[4]

A. I. Bobenko and Yu. B. Suris, Integrable noncommutative equations on quad-graphs. The consistency approach,, Lett. Math. Phys., 61 (2002), 241.  doi: 10.1023/A:1021249131979.  Google Scholar

[5]

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs,, Int. Math. Res. Not., (2002), 573.  doi: 10.1155/S1073792802110075.  Google Scholar

[6]

V. Buchstaber, n-valued groups: Theory and applications,, Moscow Mathematical Journal, 6 (2006), 57.   Google Scholar

[7]

V. M. Buchstaber, Functional equations, associated with addition theorems for elliptic functions, and two-valued algebraic groups,, Russian Math. Surv., 45 (1990), 213.  doi: 10.1070/RM1990v045n03ABEH002361.  Google Scholar

[8]

V. M. Buchstaber and V. Dragović, Two-valued groups, Kummer varieties and integrable billiards,, preprint, ().   Google Scholar

[9]

V. M. Buchstaber and S. P. Novikov, Formal groups, power systems and Adams operators,, Mat. Sb. (N. S), 84(126) (1971), 81.   Google Scholar

[10]

V. M. Buchstaber and A. P. Veselov, Integrable correspondences and algebraic representations of multivalued groups,, Internat. Math. Res. Notices, 8 (1996), 381.  doi: 10.1155/S1073792896000256.  Google Scholar

[11]

G. Darboux, Principes de Géométrie Analytique,, Gauthier-Villars, (1917).   Google Scholar

[12]

V. Dragović, Poncelet-Darboux curves, their complete decomposition and Marden theorem,, Int. Math. Res. Notes, 2011 (2011), 3502.  doi: 10.1093/imrn/rnq229.  Google Scholar

[13]

V. Dragović, Generalization and geometrization of the Kowalevski top,, Communications in Math. Phys., 298 (2010), 37.  doi: 10.1007/s00220-010-1066-z.  Google Scholar

[14]

V. Dragović and K. Kukić, New examples of systems of the Kowalevski type,, Regular and Chaotic Dynamics, 16 (2011), 484.  doi: 10.1134/S1560354711050054.  Google Scholar

[15]

V. Dragović and K. Kukić, Systems of the Kowalevski type and discriminantly separable polynomials,, Regular and Chaotic Dynamics, 19 (2014), 162.  doi: 10.1134/S1560354714020026.  Google Scholar

[16]

V. Dragović and M. Radnović, Poncelet Porisms and Beyond,, Springer, (2011).  doi: 10.1007/978-3-0348-0015-0.  Google Scholar

[17]

V. Dragović and M. Radnović, Billiard algebra, integrable line congruences and DR-nets,, J. Nonlinear Mathematical Physics, 19 (2012).  doi: 10.1142/S1402925112500192.  Google Scholar

[18]

V. V. Golubev, Lectures on the Integration of Motion of a Heavy Rigid Body Around a Fixed Point,, Gostechizdat, (1953).   Google Scholar

[19]

S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.  doi: 10.1007/BF02592182.  Google Scholar

[20]

J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry,, Clarendon Press, (1998).   Google Scholar

[1]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[2]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[3]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[4]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[5]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[8]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[9]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[10]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[11]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[12]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[13]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[14]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[15]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[16]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[17]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[18]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[19]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[20]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]