\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bundle-theoretic methods for higher-order variational calculus

Abstract Related Papers Cited by
  • We present a geometric interpretation of the integration-by-parts formula on an arbitrary vector bundle. As an application we give a new geometric formulation of higher-order variational calculus.
    Mathematics Subject Classification: 58A20, 58E30, 70H50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York, 1978.

    [2]

    F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between $T^k T^{*} M$ and $T^{*} T^k M$, C. R. Acad. Sci. Paris, 309 (1989), 1509-1514.

    [3]

    M. Crampin, Lagrangian submanifolds and the Euler-Lagrange equations in higher-order mechanics, Lett. Math. Phys., 19 (1990), 53-58.doi: 10.1007/BF00402260.

    [4]

    M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Cambridge Phillos. Soc., 99 (1986), 565-587.doi: 10.1017/S0305004100064501.

    [5]

    F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F. Vialard, Invariant higher-order variational problems, Comm. Math. Phys., 309 (2012), 413-458.doi: 10.1007/s00220-011-1313-y.

    [6]

    K., Grabowska, private communication, 2012.

    [7]

    K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204.doi: 10.1088/1751-8113/41/17/175204.

    [8]

    J. Grabowski and M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys., 62 (2011), 21-36.doi: 10.1016/j.geomphys.2011.09.004.

    [9]

    X. Gracia, J. Martin-Solano and M. Munoz-Lecenda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127-148.doi: 10.1016/S0034-4877(03)80006-X.

    [10]

    M. Jóźwikowski and M. Rotkiewicz, Prototypes of higher algebroids with application to variational calculus, preprint arXiv:1306.3379.

    [11]

    M. Jóźwikowski and W. Respondek, A comparison of vakonomic and nonholonomic variational problems with applications to systems on Lie groups, preprint arXiv:1310.8528.

    [12]

    I. Kolar, Weil bundles as generalized jet spaces, in Handbook of Global Analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 625-664.doi: 10.1016/B978-044452833-9.50013-9.

    [13]

    I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer, Berlin, 1993.

    [14]

    M. de Leon and E. Lacomba, Lagrangian submanifolds and higher-order mechanical systems, J. Phys. A, 22 (1989), 3809-3820.doi: 10.1088/0305-4470/22/18/019.

    [15]

    M. de Leon and P. R. Rodrigues, Higher order almost tangent geometry and non-autonomous Lagrangian dynamics, in Proceedings of the Winter School 'Geometry and Physics', Circolo Matematico di Palermo, Palermo (1987), 157-171.

    [16]

    K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, CUP, Cambridge, 2005.

    [17]

    A. Morimoto, Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120.

    [18]

    L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved surfaces, IMA J. Math. Control Inform., 6 (1989), 465-473.doi: 10.1093/imamci/6.4.465.

    [19]

    D. J. Saunders, The Geometry of Jet Bundles, Lecture Notes Math., 142, CUP, 1989.doi: 10.1017/CBO9780511526411.

    [20]

    W. Tulczyjew, Sur la différentiele de Lagrange, C. R. Acad. Sci. Paris Serie A, 280 (1975), 1295-1298.

    [21]

    W. Tulczyjew, The Lagrange differential, Bull. Acad. Polon. Sci., 24 (1976), 1089-1096.

    [22]

    W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris Serie A, 283 (1976), 15-18.

    [23]

    W. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris, 283 (1976), 675-678.

    [24]

    W. Tulczyjew, Evolution of Ehresmann's jet theory, in Geometry and topology of manifolds: The mathematical legacy of Charles Ehresmann, Banach Centre Publications, 76, Warsaw, 2007, 159-176.doi: 10.4064/bc76-0-6.

    [25]

    L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher-order field theories, J. Geom. Phys., 60 (2010), 857-873.doi: 10.1016/j.geomphys.2010.02.003.

    [26]

    A. Weil, Théorie des points proches sur les varietes différentiables, in Colloque de géometrie différentielle, CNRS, Strasbourg (1953), 111-117.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(181) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return