- Previous Article
- JGM Home
- This Issue
-
Next Article
Higher-order variational calculus on Lie algebroids
On the control of stability of periodic orbits of completely integrable systems
1. | The West University of Timişoara, Faculty of Mathematics and C.S., Department of Mathematics, B-dul. Vasile Pârvan, No. 4, 300223 - Timişoara, Romania |
References:
[1] |
P. Birtea, M. Boleanţu, M. Puta and R. M. Tudoran, Asymptotic stability for a class of metriplectic systems,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2771420. |
[2] |
P. Birtea and D. Comănescu, Asymptotic stability of dissipated Hamilton-Poisson systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 967.
doi: 10.1137/080735217. |
[3] |
C. Dăniasă, A. Gîrban and R. M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^{*}$,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695.
doi: 10.1142/S0219887811005889. |
[4] |
A. Gasull, H. Giacomini and M. Grau, On the stability of periodic orbits for differential systems on $\mathbbR^n$,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 495.
doi: 10.3934/dcdsb.2008.10.495. |
[5] |
P. Hartman, Ordinary Differential Equations,, Classics in Applied Mathematics, (2002).
doi: 10.1137/1.9780898719222. |
[6] |
J. Moser and E. Zehnder, Notes on Dynamical Systems,, Courant Lecture Notes in Mathematics, (2005).
|
[7] |
T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra, II: A crash course in geometric mechanics,, in Geometric Mechanics and Symmetry (eds. J. Montaldi and T. S. Ratiu), (2005), 23.
doi: 10.1017/CBO9780511526367.003. |
[8] |
R. M. Tudoran, Affine Distributions on Riemannian Manifolds with Applications to Dissipative Dynamics,, J. Geom. Phys., (2015).
doi: 10.1016/j.geomphys.2015.01.017. |
[9] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, $2^{nd}$ edition, (1996).
doi: 10.1007/978-3-642-61453-8. |
show all references
References:
[1] |
P. Birtea, M. Boleanţu, M. Puta and R. M. Tudoran, Asymptotic stability for a class of metriplectic systems,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2771420. |
[2] |
P. Birtea and D. Comănescu, Asymptotic stability of dissipated Hamilton-Poisson systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 967.
doi: 10.1137/080735217. |
[3] |
C. Dăniasă, A. Gîrban and R. M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^{*}$,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695.
doi: 10.1142/S0219887811005889. |
[4] |
A. Gasull, H. Giacomini and M. Grau, On the stability of periodic orbits for differential systems on $\mathbbR^n$,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 495.
doi: 10.3934/dcdsb.2008.10.495. |
[5] |
P. Hartman, Ordinary Differential Equations,, Classics in Applied Mathematics, (2002).
doi: 10.1137/1.9780898719222. |
[6] |
J. Moser and E. Zehnder, Notes on Dynamical Systems,, Courant Lecture Notes in Mathematics, (2005).
|
[7] |
T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra, II: A crash course in geometric mechanics,, in Geometric Mechanics and Symmetry (eds. J. Montaldi and T. S. Ratiu), (2005), 23.
doi: 10.1017/CBO9780511526367.003. |
[8] |
R. M. Tudoran, Affine Distributions on Riemannian Manifolds with Applications to Dissipative Dynamics,, J. Geom. Phys., (2015).
doi: 10.1016/j.geomphys.2015.01.017. |
[9] |
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, $2^{nd}$ edition, (1996).
doi: 10.1007/978-3-642-61453-8. |
[1] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[2] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[3] |
Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235 |
[4] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[5] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[6] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[7] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[8] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[9] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[10] |
Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1 |
[11] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[12] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[13] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[14] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[15] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[16] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[17] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[18] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[19] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[20] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]