March  2015, 7(1): 109-124. doi: 10.3934/jgm.2015.7.109

On the control of stability of periodic orbits of completely integrable systems

1. 

The West University of Timişoara, Faculty of Mathematics and C.S., Department of Mathematics, B-dul. Vasile Pârvan, No. 4, 300223 - Timişoara, Romania

Received  February 2014 Revised  January 2015 Published  March 2015

We provide a constructive method designed in order to control the stability of a given periodic orbit of a general completely integrable system. The method consists of a specific type of perturbation, such that the resulting perturbed system becomes a codimension-one dissipative dynamical system which also admits that orbit as a periodic orbit, but whose stability can be a-priori prescribed. The main results are illustrated in the case of a three dimensional dissipative perturbation of the harmonic oscillator, and respectively Euler's equations form the free rigid body dynamics.
Citation: Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109
References:
[1]

P. Birtea, M. Boleanţu, M. Puta and R. M. Tudoran, Asymptotic stability for a class of metriplectic systems,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2771420.  Google Scholar

[2]

P. Birtea and D. Comănescu, Asymptotic stability of dissipated Hamilton-Poisson systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 967.  doi: 10.1137/080735217.  Google Scholar

[3]

C. Dăniasă, A. Gîrban and R. M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^{*}$,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695.  doi: 10.1142/S0219887811005889.  Google Scholar

[4]

A. Gasull, H. Giacomini and M. Grau, On the stability of periodic orbits for differential systems on $\mathbbR^n$,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 495.  doi: 10.3934/dcdsb.2008.10.495.  Google Scholar

[5]

P. Hartman, Ordinary Differential Equations,, Classics in Applied Mathematics, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[6]

J. Moser and E. Zehnder, Notes on Dynamical Systems,, Courant Lecture Notes in Mathematics, (2005).   Google Scholar

[7]

T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra, II: A crash course in geometric mechanics,, in Geometric Mechanics and Symmetry (eds. J. Montaldi and T. S. Ratiu), (2005), 23.  doi: 10.1017/CBO9780511526367.003.  Google Scholar

[8]

R. M. Tudoran, Affine Distributions on Riemannian Manifolds with Applications to Dissipative Dynamics,, J. Geom. Phys., (2015).  doi: 10.1016/j.geomphys.2015.01.017.  Google Scholar

[9]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, $2^{nd}$ edition, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

show all references

References:
[1]

P. Birtea, M. Boleanţu, M. Puta and R. M. Tudoran, Asymptotic stability for a class of metriplectic systems,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2771420.  Google Scholar

[2]

P. Birtea and D. Comănescu, Asymptotic stability of dissipated Hamilton-Poisson systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 967.  doi: 10.1137/080735217.  Google Scholar

[3]

C. Dăniasă, A. Gîrban and R. M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^{*}$,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695.  doi: 10.1142/S0219887811005889.  Google Scholar

[4]

A. Gasull, H. Giacomini and M. Grau, On the stability of periodic orbits for differential systems on $\mathbbR^n$,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 495.  doi: 10.3934/dcdsb.2008.10.495.  Google Scholar

[5]

P. Hartman, Ordinary Differential Equations,, Classics in Applied Mathematics, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[6]

J. Moser and E. Zehnder, Notes on Dynamical Systems,, Courant Lecture Notes in Mathematics, (2005).   Google Scholar

[7]

T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra, II: A crash course in geometric mechanics,, in Geometric Mechanics and Symmetry (eds. J. Montaldi and T. S. Ratiu), (2005), 23.  doi: 10.1017/CBO9780511526367.003.  Google Scholar

[8]

R. M. Tudoran, Affine Distributions on Riemannian Manifolds with Applications to Dissipative Dynamics,, J. Geom. Phys., (2015).  doi: 10.1016/j.geomphys.2015.01.017.  Google Scholar

[9]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, $2^{nd}$ edition, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[1]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[2]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[3]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[7]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[8]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[9]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[10]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[11]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[12]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[13]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[14]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[15]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[16]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[17]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[18]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[19]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[20]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]