March  2015, 7(1): 109-124. doi: 10.3934/jgm.2015.7.109

On the control of stability of periodic orbits of completely integrable systems

1. 

The West University of Timişoara, Faculty of Mathematics and C.S., Department of Mathematics, B-dul. Vasile Pârvan, No. 4, 300223 - Timişoara, Romania

Received  February 2014 Revised  January 2015 Published  March 2015

We provide a constructive method designed in order to control the stability of a given periodic orbit of a general completely integrable system. The method consists of a specific type of perturbation, such that the resulting perturbed system becomes a codimension-one dissipative dynamical system which also admits that orbit as a periodic orbit, but whose stability can be a-priori prescribed. The main results are illustrated in the case of a three dimensional dissipative perturbation of the harmonic oscillator, and respectively Euler's equations form the free rigid body dynamics.
Citation: Răzvan M. Tudoran. On the control of stability of periodic orbits of completely integrable systems. Journal of Geometric Mechanics, 2015, 7 (1) : 109-124. doi: 10.3934/jgm.2015.7.109
References:
[1]

P. Birtea, M. Boleanţu, M. Puta and R. M. Tudoran, Asymptotic stability for a class of metriplectic systems,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2771420.  Google Scholar

[2]

P. Birtea and D. Comănescu, Asymptotic stability of dissipated Hamilton-Poisson systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 967.  doi: 10.1137/080735217.  Google Scholar

[3]

C. Dăniasă, A. Gîrban and R. M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^{*}$,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695.  doi: 10.1142/S0219887811005889.  Google Scholar

[4]

A. Gasull, H. Giacomini and M. Grau, On the stability of periodic orbits for differential systems on $\mathbbR^n$,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 495.  doi: 10.3934/dcdsb.2008.10.495.  Google Scholar

[5]

P. Hartman, Ordinary Differential Equations,, Classics in Applied Mathematics, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[6]

J. Moser and E. Zehnder, Notes on Dynamical Systems,, Courant Lecture Notes in Mathematics, (2005).   Google Scholar

[7]

T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra, II: A crash course in geometric mechanics,, in Geometric Mechanics and Symmetry (eds. J. Montaldi and T. S. Ratiu), (2005), 23.  doi: 10.1017/CBO9780511526367.003.  Google Scholar

[8]

R. M. Tudoran, Affine Distributions on Riemannian Manifolds with Applications to Dissipative Dynamics,, J. Geom. Phys., (2015).  doi: 10.1016/j.geomphys.2015.01.017.  Google Scholar

[9]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, $2^{nd}$ edition, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

show all references

References:
[1]

P. Birtea, M. Boleanţu, M. Puta and R. M. Tudoran, Asymptotic stability for a class of metriplectic systems,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2771420.  Google Scholar

[2]

P. Birtea and D. Comănescu, Asymptotic stability of dissipated Hamilton-Poisson systems,, SIAM J. Appl. Dyn. Syst., 8 (2009), 967.  doi: 10.1137/080735217.  Google Scholar

[3]

C. Dăniasă, A. Gîrban and R. M. Tudoran, New aspects on the geometry and dynamics of quadratic Hamiltonian systems on $(\mathfrak{so}(3))^{*}$,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1695.  doi: 10.1142/S0219887811005889.  Google Scholar

[4]

A. Gasull, H. Giacomini and M. Grau, On the stability of periodic orbits for differential systems on $\mathbbR^n$,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 495.  doi: 10.3934/dcdsb.2008.10.495.  Google Scholar

[5]

P. Hartman, Ordinary Differential Equations,, Classics in Applied Mathematics, (2002).  doi: 10.1137/1.9780898719222.  Google Scholar

[6]

J. Moser and E. Zehnder, Notes on Dynamical Systems,, Courant Lecture Notes in Mathematics, (2005).   Google Scholar

[7]

T. S. Ratiu, R. M. Tudoran, L. Sbano, E. Sousa Dias and G. Terra, II: A crash course in geometric mechanics,, in Geometric Mechanics and Symmetry (eds. J. Montaldi and T. S. Ratiu), (2005), 23.  doi: 10.1017/CBO9780511526367.003.  Google Scholar

[8]

R. M. Tudoran, Affine Distributions on Riemannian Manifolds with Applications to Dissipative Dynamics,, J. Geom. Phys., (2015).  doi: 10.1016/j.geomphys.2015.01.017.  Google Scholar

[9]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, $2^{nd}$ edition, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[1]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[2]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[6]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[7]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[10]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[11]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[12]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[13]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]