-
Previous Article
On the extended Euler system and the Jacobi and Weierstrass elliptic functions
- JGM Home
- This Issue
- Next Article
Completeness properties of Sobolev metrics on the space of curves
1. | Department of Mathematics, Brunel Unversity London, Uxbridge UB8 3PH, United Kingdom |
References:
[1] |
R. A. Adams, Sobolev Spaces,, 2nd edition, (2003).
|
[2] |
H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Dedicated to the memory of Branko Najman, 35(55) (2000), 161.
|
[3] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics,, J. Geom. Mech., 4 (2012), 365.
|
[4] |
M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation,, Ann. Global Anal. Geom., 41 (2012), 461.
doi: 10.1007/s10455-011-9294-9. |
[5] |
M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geom. Appl., 34 (2014), 139.
doi: 10.1016/j.difgeo.2014.04.008. |
[6] |
M. Bauer, M. Bruveris and P. Michor, $R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves,, Geom. Imaging Comput., 1 (2014), 1.
doi: 10.4310/GIC.2014.v1.n1.a1. |
[7] |
M. Bauer, M. Bruveris and P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, 50 (2014), 60.
doi: 10.1007/s10851-013-0490-z. |
[8] |
M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality,, Differential Geom. Appl., 39 (2015), 166.
doi: 10.1016/j.difgeo.2014.12.008. |
[9] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, J. Geom. Mech., 3 (2011), 389.
|
[10] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, J. Differential Geom., 94 (2013), 187.
|
[11] |
M. Bruveris, P. W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves,, Forum Math. Sigma, 2 (2014).
doi: 10.1017/fms.2014.19. |
[12] |
M. Bruveris and F.-X. Vialard, On completeness of groups of diffeomorphisms,, preprint, (2014). Google Scholar |
[13] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry,, Graduate Studies in Mathematics, (2001).
doi: 10.1090/gsm/033. |
[14] |
A. Burtscher, Length structures on manifolds with continuous Riemannian metrics,, preprint, (2013). Google Scholar |
[15] |
V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391.
doi: 10.1016/0926-2245(91)90015-2. |
[16] |
G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven and O. Faugeras, Generalized gradients: Priors on minimization flows,, Int. J. Comput. Vision, 73 (2007), 325.
doi: 10.1007/s11263-006-9966-2. |
[17] |
D. G. Ebin, The manifold of Riemannian metrics,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 11.
|
[18] |
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102.
doi: 10.2307/1970699. |
[19] |
J. Eells, Jr., A setting for global analysis,, Bull. Amer. Math. Soc., 72 (1966), 751.
doi: 10.1090/S0002-9904-1966-11558-6. |
[20] |
H. I. Elíasson, Condition (C) and geodesics on Sobolev manifolds,, Bull. Amer. Math. Soc., 77 (1971), 1002.
doi: 10.1090/S0002-9904-1971-12836-7. |
[21] |
F. Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 55.
|
[22] |
R. S. Hamilton, The inverse function theorem of Nash and Moser,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65.
doi: 10.1090/S0273-0979-1982-15004-2. |
[23] |
D. Huet, Décomposition Spectrale et Opérateurs,, Le Mathématicien, (1976).
|
[24] |
H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013).
doi: 10.1090/S0065-9266-2013-00676-4. |
[25] |
G. S. Jones, Fundamental inequalities for discrete and discontinuous functional equations,, J. Soc. Indust. Appl. Math., 12 (1964), 43.
doi: 10.1137/0112004. |
[26] |
T. Kappeler, E. Loubet and P. Topalov, Riemannian exponential maps of the diffeomorphism groups of $\mathbbT^2$,, Asian J. Math., 12 (2008), 391.
doi: 10.4310/AJM.2008.v12.n3.a7. |
[27] |
W. P. A. Klingenberg, Riemannian Geometry,, 2nd edition, (1995).
doi: 10.1515/9783110905120. |
[28] |
H. Kodama and P. W. Michor, The homotopy type of the space of degree 0-immersed plane curves,, Rev. Mat. Complut., 19 (2006), 227.
doi: 10.5209/rev_REMA.2006.v19.n1.16660. |
[29] |
S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857.
doi: 10.1063/1.532690. |
[30] |
A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis,, Mathematical Surveys and Monographs, (1997).
doi: 10.1090/surv/053. |
[31] |
S. Lang, Fundamentals of Differential Geometry,, Graduate Texts in Mathematics, (1999).
doi: 10.1007/978-1-4612-0541-8. |
[32] |
A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423.
doi: 10.4171/IFB/196. |
[33] |
P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.
|
[34] |
P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.
doi: 10.4171/JEMS/37. |
[35] |
P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.
doi: 10.1016/j.acha.2006.07.004. |
[36] |
G. Nardi, G. Peyré and F.-X. Vialard, Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics,, Technical report, (2014). Google Scholar |
[37] |
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions,, U.S. Department of Commerce National Institute of Standards and Technology, (2010). Google Scholar |
[38] |
B. G. Pachpatte, Inequalities for Differential and Integral Equations,, Mathematics in Science and Engineering, (1998).
|
[39] |
R. S. Palais, Foundations of Global Non-Linear Analysis,, W. A. Benjamin, (1968).
|
[40] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,, 2nd edition, (1980).
|
[41] |
M. Rumpf and B. Wirth, Variational time discretization of geodesic calculus,, IMA J. Numer. Anal., (2014).
doi: 10.1093/imanum/dru027. |
[42] |
J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123.
doi: 10.1090/S0033-569X-07-01084-4. |
[43] |
J. Shah, An $H^2$ Riemannian metric on the space of planar curves modulo similitudes,, Adv. in Appl. Math., 51 (2013), 483.
doi: 10.1016/j.aam.2013.06.003. |
[44] |
N. K. Smolentsev, Diffeomorphism groups of compact manifolds,, Sovrem. Mat. Prilozh., (2006), 3.
doi: 10.1007/s10958-007-0471-0. |
[45] |
A. Srivastava, E. Klassen, S. H. Joshi and I. H. Jermyn, Shape analysis of elastic curves in Euclidean spaces,, IEEE T. Pattern Anal., 33 (2011), 1415.
doi: 10.1109/TPAMI.2010.184. |
[46] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, in Variational, (3752), 109.
doi: 10.1007/11567646_10. |
[47] |
K. Yosida, Functional Analysis,, Sixth edition, (1980).
|
[48] |
L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25.
doi: 10.4171/RLM/506. |
show all references
References:
[1] |
R. A. Adams, Sobolev Spaces,, 2nd edition, (2003).
|
[2] |
H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Dedicated to the memory of Branko Najman, 35(55) (2000), 161.
|
[3] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics,, J. Geom. Mech., 4 (2012), 365.
|
[4] |
M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation,, Ann. Global Anal. Geom., 41 (2012), 461.
doi: 10.1007/s10455-011-9294-9. |
[5] |
M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geom. Appl., 34 (2014), 139.
doi: 10.1016/j.difgeo.2014.04.008. |
[6] |
M. Bauer, M. Bruveris and P. Michor, $R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves,, Geom. Imaging Comput., 1 (2014), 1.
doi: 10.4310/GIC.2014.v1.n1.a1. |
[7] |
M. Bauer, M. Bruveris and P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, 50 (2014), 60.
doi: 10.1007/s10851-013-0490-z. |
[8] |
M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality,, Differential Geom. Appl., 39 (2015), 166.
doi: 10.1016/j.difgeo.2014.12.008. |
[9] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, J. Geom. Mech., 3 (2011), 389.
|
[10] |
M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, J. Differential Geom., 94 (2013), 187.
|
[11] |
M. Bruveris, P. W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves,, Forum Math. Sigma, 2 (2014).
doi: 10.1017/fms.2014.19. |
[12] |
M. Bruveris and F.-X. Vialard, On completeness of groups of diffeomorphisms,, preprint, (2014). Google Scholar |
[13] |
D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry,, Graduate Studies in Mathematics, (2001).
doi: 10.1090/gsm/033. |
[14] |
A. Burtscher, Length structures on manifolds with continuous Riemannian metrics,, preprint, (2013). Google Scholar |
[15] |
V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391.
doi: 10.1016/0926-2245(91)90015-2. |
[16] |
G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven and O. Faugeras, Generalized gradients: Priors on minimization flows,, Int. J. Comput. Vision, 73 (2007), 325.
doi: 10.1007/s11263-006-9966-2. |
[17] |
D. G. Ebin, The manifold of Riemannian metrics,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 11.
|
[18] |
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102.
doi: 10.2307/1970699. |
[19] |
J. Eells, Jr., A setting for global analysis,, Bull. Amer. Math. Soc., 72 (1966), 751.
doi: 10.1090/S0002-9904-1966-11558-6. |
[20] |
H. I. Elíasson, Condition (C) and geodesics on Sobolev manifolds,, Bull. Amer. Math. Soc., 77 (1971), 1002.
doi: 10.1090/S0002-9904-1971-12836-7. |
[21] |
F. Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 55.
|
[22] |
R. S. Hamilton, The inverse function theorem of Nash and Moser,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65.
doi: 10.1090/S0273-0979-1982-15004-2. |
[23] |
D. Huet, Décomposition Spectrale et Opérateurs,, Le Mathématicien, (1976).
|
[24] |
H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013).
doi: 10.1090/S0065-9266-2013-00676-4. |
[25] |
G. S. Jones, Fundamental inequalities for discrete and discontinuous functional equations,, J. Soc. Indust. Appl. Math., 12 (1964), 43.
doi: 10.1137/0112004. |
[26] |
T. Kappeler, E. Loubet and P. Topalov, Riemannian exponential maps of the diffeomorphism groups of $\mathbbT^2$,, Asian J. Math., 12 (2008), 391.
doi: 10.4310/AJM.2008.v12.n3.a7. |
[27] |
W. P. A. Klingenberg, Riemannian Geometry,, 2nd edition, (1995).
doi: 10.1515/9783110905120. |
[28] |
H. Kodama and P. W. Michor, The homotopy type of the space of degree 0-immersed plane curves,, Rev. Mat. Complut., 19 (2006), 227.
doi: 10.5209/rev_REMA.2006.v19.n1.16660. |
[29] |
S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857.
doi: 10.1063/1.532690. |
[30] |
A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis,, Mathematical Surveys and Monographs, (1997).
doi: 10.1090/surv/053. |
[31] |
S. Lang, Fundamentals of Differential Geometry,, Graduate Texts in Mathematics, (1999).
doi: 10.1007/978-1-4612-0541-8. |
[32] |
A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423.
doi: 10.4171/IFB/196. |
[33] |
P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.
|
[34] |
P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.
doi: 10.4171/JEMS/37. |
[35] |
P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.
doi: 10.1016/j.acha.2006.07.004. |
[36] |
G. Nardi, G. Peyré and F.-X. Vialard, Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics,, Technical report, (2014). Google Scholar |
[37] |
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions,, U.S. Department of Commerce National Institute of Standards and Technology, (2010). Google Scholar |
[38] |
B. G. Pachpatte, Inequalities for Differential and Integral Equations,, Mathematics in Science and Engineering, (1998).
|
[39] |
R. S. Palais, Foundations of Global Non-Linear Analysis,, W. A. Benjamin, (1968).
|
[40] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,, 2nd edition, (1980).
|
[41] |
M. Rumpf and B. Wirth, Variational time discretization of geodesic calculus,, IMA J. Numer. Anal., (2014).
doi: 10.1093/imanum/dru027. |
[42] |
J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123.
doi: 10.1090/S0033-569X-07-01084-4. |
[43] |
J. Shah, An $H^2$ Riemannian metric on the space of planar curves modulo similitudes,, Adv. in Appl. Math., 51 (2013), 483.
doi: 10.1016/j.aam.2013.06.003. |
[44] |
N. K. Smolentsev, Diffeomorphism groups of compact manifolds,, Sovrem. Mat. Prilozh., (2006), 3.
doi: 10.1007/s10958-007-0471-0. |
[45] |
A. Srivastava, E. Klassen, S. H. Joshi and I. H. Jermyn, Shape analysis of elastic curves in Euclidean spaces,, IEEE T. Pattern Anal., 33 (2011), 1415.
doi: 10.1109/TPAMI.2010.184. |
[46] |
G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, in Variational, (3752), 109.
doi: 10.1007/11567646_10. |
[47] |
K. Yosida, Functional Analysis,, Sixth edition, (1980).
|
[48] |
L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25.
doi: 10.4171/RLM/506. |
[1] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389 |
[2] |
Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365 |
[3] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[4] |
Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71 |
[5] |
Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks & Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019 |
[6] |
Flavia Antonacci, Marco Degiovanni. On the Euler equation for minimal geodesics on Riemannian manifoldshaving discontinuous metrics. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 833-842. doi: 10.3934/dcds.2006.15.833 |
[7] |
Samir Chowdhury, Facundo Mémoli. Explicit geodesics in Gromov-Hausdorff space. Electronic Research Announcements, 2018, 25: 48-59. doi: 10.3934/era.2018.25.006 |
[8] |
Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005 |
[9] |
Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010 |
[10] |
Xifeng Su, Rafael de la Llave. On a remarkable example of F. Almgren and H. Federer in the global theory of minimizing geodesics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7057-7080. doi: 10.3934/dcds.2019295 |
[11] |
Robert J. Martin, Patrizio Neff. Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. Journal of Geometric Mechanics, 2016, 8 (3) : 323-357. doi: 10.3934/jgm.2016010 |
[12] |
Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335 |
[13] |
Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619 |
[14] |
Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59. |
[15] |
Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096 |
[16] |
Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165 |
[17] |
Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243 |
[18] |
Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441 |
[19] |
Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021 |
[20] |
M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]