\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the extended Euler system and the Jacobi and Weierstrass elliptic functions

Abstract Related Papers Cited by
  • We study the extended Euler systems (EES) as an initial value problem. Particular realizations of it lead to several Lie-Poisson structures. We consider a 6-D Poisson structure that fit all of them together. The symplectic stratification of this non Lie-Poisson structure uses the first integrals which are elliptic and hyperbolic cylinders, although other quadrics may be used as well. A qualitative study of the solutions is carried out and the twelve Jacobi elliptic functions in the real domain are shown in an unified way as the solutions of the EES. As a consequence, Jacobi's transformation for the elliptic modulus is obtained. Likewise, introducing the square norm function we establish in a straightforward way the connection of the EES with the Weierstrass $\wp$ elliptic function, giving the relation of its invariants $g_i$ with the integrals and coefficients of the EES.
    Mathematics Subject Classification: Primary: 33E05, 34A34; Secondary: 37K10, 70H06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd edition, Springer-Verlag, Berlin Heidelberg New York, 1971.

    [2]

    F. Crespo, Hopf Fibration Reduction of a Quartic Model. An Application to Rotational and Orbital Dynamics, Ph.D thesis, Universidad de Murcia, 2015, 208 pp.

    [3]

    S. Ferrer, F. Crespo and F. J. Molero, On the N-extended Euler system I. Generalized Jacobi elliptic functions, submitted to Nonlinear Dynamics, arXiv:1505.06142, 2015.

    [4]

    S. Ferrer and F. Crespo, On a quartic polynomial model. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems, Journal of Geometric Mechanics, 6 (2014), 479-502.doi: 10.3934/jgm.2014.6.479.

    [5]

    A. G. Greenhill, The Applications of Elliptic Functions, Macmillan and Co., London, 1892.

    [6]

    C. GudermannTheorie der Modular Functionen, Crelle's Journal, t. 18.

    [7]

    J. K. Hale, Ordinary Differential Equations, Wiley-Interscience, New York, 1969.

    [8]

    D. D. Holm and J. E. Marsden, The rotor and the pendulum, in Symplectic Geometry and Mathematical Physics, Prog. In Math., 99, Birkhäuser Boston, Boston, MA, 1991, 189-203.

    [9]

    T. Iwai and D. Tarama, Classical and quantum dynamics for an extended free rigid body, Differential Geometry and its Applications, 28 (2010), 501-517.doi: 10.1016/j.difgeo.2010.05.002.

    [10]

    D. F. Lawden, Elliptic Functions and Aplications, Vol. 80, Springer-Verlag, New York, 1989.doi: 10.1007/978-1-4757-3980-0.

    [11]

    J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999.doi: 10.1007/978-0-387-21792-5.

    [12]

    K. R. Meyer, Jacobi elliptic functions from a dynamical system point of view, The American Mathematical Monthly, 108 (2001), 729-737.doi: 10.2307/2695616.

    [13]

    F. J. Molero, M. Lara, S. Ferrer and F. Céspedes, 2-D Duffing oscillator: Elliptic functions from a dynamical system point of view, Qual. Theory Dyn. Syst., 12 (2013), 115-139.doi: 10.1007/s12346-012-0081-1.

    [14]

    Y. Nambu, Generalized Hamiltonian mechanics, Phys. Rev., 7 (1973), 2405-2412.doi: 10.1103/PhysRevD.7.2405.

    [15]

    M. Puta, On the dynamics of the rigid body with two torques, C. R. Acad. Sci. Paris, 317 (1993), 377-380.

    [16]

    M. Puta, Stability and control in spacecraft dynamics, Journal of Lie Theory, 7 (1997), 269-278.

    [17]

    M. Puta and I. Casu, Geometrical aspects in the rigid body dynamics with three quadratic controls, in Geometry, Integrability and Quantization (Varna, 1999), Coral Press Sci. Publ., Sofia, 2000, 209-224.

    [18]

    A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557.

    [19]

    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.doi: 10.1017/CBO9780511608759.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(252) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return