-
Previous Article
Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach
- JGM Home
- This Issue
- Next Article
Hypersymplectic structures on Courant algebroids
1. | CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal, Portugal |
References:
[1] |
P. Antunes, Crochets de Poisson Gradués et Applications: Structures Compatibles et Généralisations des Structures Hyperkählériennes,, Ph.D thesis, (2010). Google Scholar |
[2] |
P. Antunes, C. Laurent-Gengoux and J. M. Nunes da Costa, Hierarchies and compatibility on Courant algebroids,, Pac. J. Math., 261 (2013), 1.
doi: 10.2140/pjm.2013.261.1. |
[3] |
P. Antunes and J. M. Nunes da Costa, Hyperstructures on Lie algebroids,, Rev. in Math. Phys., 25 (2013).
doi: 10.1142/S0129055X13430034. |
[4] |
P. Antunes and J. M. Nunes da Costa, Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid,, Int. J. Geom. Meth. Mod. Phys., 11 (2014).
doi: 10.1142/S0219887814600305. |
[5] |
P. Antunes and J. M. Nunes da Costa, Hyperstructures with torsion on Lie algebroids, preprint,, , (). Google Scholar |
[6] |
H. Bursztyn, G. Cavalcanti and M. Gualtieri, Generalized Kähler and hyper-Kähler quotients,, in Poisson geometry in mathematics and physics, 450 (2008), 61.
doi: 10.1090/conm/450/08734. |
[7] |
P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion,, Phys. Lett. B, 379 (1996), 80.
doi: 10.1016/0370-2693(96)00393-0. |
[8] |
J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101.
|
[9] |
N. Hitchin, Generalized Calabi-Yau manifolds,, Q. J. Math., 54 (2003), 281.
doi: 10.1093/qmath/hag025. |
[10] |
Y. Kosmann-Schwarzbach, Quasi, twisted, and all that ... in Poisson geometry and Lie algebroid theory,, in The Breadth of symplectic and Poisson geometry, (2005), 363.
doi: 10.1007/0-8176-4419-9_12. |
[11] |
Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory,, in Higher Structures in Geometry and Physics, (2011), 243.
doi: 10.1007/978-0-8176-4735-3_12. |
[12] |
D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in Quantization, (2002), 169.
doi: 10.1090/conm/315/05479. |
[13] |
D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds,, Lett. Math. Phys., 61 (2002), 123.
doi: 10.1023/A:1020708131005. |
[14] |
M. Stiénon, Hypercomplex structures on Courant algebroids,, C. R. Acad. Sci. Paris, 347 (2009), 545.
doi: 10.1016/j.crma.2009.02.020. |
[15] |
T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids,, in Quantization, (2002), 131.
doi: 10.1090/conm/315/05478. |
[16] |
P. Xu, Hyper-Lie Poisson structures,, Ann. Sci. École Norm. Sup., 30 (1997), 279.
doi: 10.1016/S0012-9593(97)89921-1. |
show all references
References:
[1] |
P. Antunes, Crochets de Poisson Gradués et Applications: Structures Compatibles et Généralisations des Structures Hyperkählériennes,, Ph.D thesis, (2010). Google Scholar |
[2] |
P. Antunes, C. Laurent-Gengoux and J. M. Nunes da Costa, Hierarchies and compatibility on Courant algebroids,, Pac. J. Math., 261 (2013), 1.
doi: 10.2140/pjm.2013.261.1. |
[3] |
P. Antunes and J. M. Nunes da Costa, Hyperstructures on Lie algebroids,, Rev. in Math. Phys., 25 (2013).
doi: 10.1142/S0129055X13430034. |
[4] |
P. Antunes and J. M. Nunes da Costa, Induced hypersymplectic and hyperkähler structures on the dual of a Lie algebroid,, Int. J. Geom. Meth. Mod. Phys., 11 (2014).
doi: 10.1142/S0219887814600305. |
[5] |
P. Antunes and J. M. Nunes da Costa, Hyperstructures with torsion on Lie algebroids, preprint,, , (). Google Scholar |
[6] |
H. Bursztyn, G. Cavalcanti and M. Gualtieri, Generalized Kähler and hyper-Kähler quotients,, in Poisson geometry in mathematics and physics, 450 (2008), 61.
doi: 10.1090/conm/450/08734. |
[7] |
P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion,, Phys. Lett. B, 379 (1996), 80.
doi: 10.1016/0370-2693(96)00393-0. |
[8] |
J. Grabowski, Courant-Nijenhuis tensors and generalized geometries,, in Groups, 29 (2006), 101.
|
[9] |
N. Hitchin, Generalized Calabi-Yau manifolds,, Q. J. Math., 54 (2003), 281.
doi: 10.1093/qmath/hag025. |
[10] |
Y. Kosmann-Schwarzbach, Quasi, twisted, and all that ... in Poisson geometry and Lie algebroid theory,, in The Breadth of symplectic and Poisson geometry, (2005), 363.
doi: 10.1007/0-8176-4419-9_12. |
[11] |
Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory,, in Higher Structures in Geometry and Physics, (2011), 243.
doi: 10.1007/978-0-8176-4735-3_12. |
[12] |
D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in Quantization, (2002), 169.
doi: 10.1090/conm/315/05479. |
[13] |
D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds,, Lett. Math. Phys., 61 (2002), 123.
doi: 10.1023/A:1020708131005. |
[14] |
M. Stiénon, Hypercomplex structures on Courant algebroids,, C. R. Acad. Sci. Paris, 347 (2009), 545.
doi: 10.1016/j.crma.2009.02.020. |
[15] |
T. Voronov, Graded manifolds and Drinfeld doubles for Lie bialgebroids,, in Quantization, (2002), 131.
doi: 10.1090/conm/315/05478. |
[16] |
P. Xu, Hyper-Lie Poisson structures,, Ann. Sci. École Norm. Sup., 30 (1997), 279.
doi: 10.1016/S0012-9593(97)89921-1. |
[1] |
David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58 |
[2] |
Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025 |
[3] |
Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71 |
[4] |
Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701 |
[5] |
Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389 |
[6] |
Gang Tian. Finite-time singularity of Kähler-Ricci flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1137-1150. doi: 10.3934/dcds.2010.28.1137 |
[7] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
[8] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[9] |
Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39 |
[10] |
Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307 |
[11] |
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066 |
[12] |
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 |
[13] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[14] |
André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351 |
[15] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[16] |
K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87. |
[17] |
Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 |
[18] |
Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121 |
[19] |
Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213 |
[20] |
Dennise García-Beltrán, José A. Vallejo, Yurii Vorobiev. Lie algebroids generated by cohomology operators. Journal of Geometric Mechanics, 2015, 7 (3) : 295-315. doi: 10.3934/jgm.2015.7.295 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]