- Previous Article
- JGM Home
- This Issue
-
Next Article
The emergence of torsion in the continuum limit of distributed edge-dislocations
A note on $2$-plectic homogeneous manifolds
1. | Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, P.O.Box 518, Iran |
References:
[1] |
J. C. Baez, A. E. Hoffnung and C. L. Rogers, Categorified symplectic geometry and the classical string,, Comm. Math.Phys., 293 (2010), 701.
doi: 10.1007/s00220-009-0951-9. |
[2] |
F. Cantrijn, A. Ibort and M. DeLeon, Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.
|
[3] |
F. Cantrijn, A. Ibort and M. DeLeon, On the geometry of multisymplectic manifolds,, J. Austral. Math. Soc.(Series A), 66 (1999), 303.
doi: 10.1017/S1446788700036636. |
[4] |
J. F. Carinena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Diff. Geom. Appl., 1 (1991), 345.
doi: 10.1016/0926-2245(91)90013-Y. |
[5] |
M. Gotay, J. Isenberg, J. Marsden and R. Montgomery, Momentum maps and classical relativistic fields, Part I: Covariant field theory,, , (). Google Scholar |
[6] |
J. Kijowski, A finite-dimensional canonical formalism in the classical field theory,, Commun. Math. Phys., 30 (1973), 99.
doi: 10.1007/BF01645975. |
[7] |
T. B. Madsen and A. Swann, Multi-Moment maps,, Adv. Math., 229 (2012), 2287.
doi: 10.1016/j.aim.2012.01.002. |
[8] |
G. Martin, A Darboux theorem for multisymplectic manifolds,, Lett. Math. Phys., 16 (1988), 133.
doi: 10.1007/BF00402020. |
[9] |
C. L. Rogers, Higher Symplectic Geometry,, Ph.D thesis, (). Google Scholar |
[10] |
M. Shafiee, On compact semisimple Lie groups as $2$-plectic manifolds,, J. Geom., 105 (2014), 615.
doi: 10.1007/s00022-014-0223-5. |
[11] |
Ph. B. Zwart and W. M. Boothby, On compact homogeneous symplectic manifolds,, Ann. Inst. Fourier, 30 (1980), 129.
|
show all references
References:
[1] |
J. C. Baez, A. E. Hoffnung and C. L. Rogers, Categorified symplectic geometry and the classical string,, Comm. Math.Phys., 293 (2010), 701.
doi: 10.1007/s00220-009-0951-9. |
[2] |
F. Cantrijn, A. Ibort and M. DeLeon, Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.
|
[3] |
F. Cantrijn, A. Ibort and M. DeLeon, On the geometry of multisymplectic manifolds,, J. Austral. Math. Soc.(Series A), 66 (1999), 303.
doi: 10.1017/S1446788700036636. |
[4] |
J. F. Carinena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Diff. Geom. Appl., 1 (1991), 345.
doi: 10.1016/0926-2245(91)90013-Y. |
[5] |
M. Gotay, J. Isenberg, J. Marsden and R. Montgomery, Momentum maps and classical relativistic fields, Part I: Covariant field theory,, , (). Google Scholar |
[6] |
J. Kijowski, A finite-dimensional canonical formalism in the classical field theory,, Commun. Math. Phys., 30 (1973), 99.
doi: 10.1007/BF01645975. |
[7] |
T. B. Madsen and A. Swann, Multi-Moment maps,, Adv. Math., 229 (2012), 2287.
doi: 10.1016/j.aim.2012.01.002. |
[8] |
G. Martin, A Darboux theorem for multisymplectic manifolds,, Lett. Math. Phys., 16 (1988), 133.
doi: 10.1007/BF00402020. |
[9] |
C. L. Rogers, Higher Symplectic Geometry,, Ph.D thesis, (). Google Scholar |
[10] |
M. Shafiee, On compact semisimple Lie groups as $2$-plectic manifolds,, J. Geom., 105 (2014), 615.
doi: 10.1007/s00022-014-0223-5. |
[11] |
Ph. B. Zwart and W. M. Boothby, On compact homogeneous symplectic manifolds,, Ann. Inst. Fourier, 30 (1980), 129.
|
[1] |
Géry de Saxcé, Claude Vallée. Structure of the space of 2D elasticity tensors. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1525-1537. doi: 10.3934/dcdss.2013.6.1525 |
[2] |
Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003 |
[3] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[4] |
Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169 |
[5] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[6] |
Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431 |
[7] |
Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the Birkoff-Kellogg theorem. Conference Publications, 2007, 2007 (Special) : 260-268. doi: 10.3934/proc.2007.2007.260 |
[8] |
M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755 |
[9] |
Tian Ma, Shouhong Wang. Structure of 2D incompressible flows with the Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 29-41. doi: 10.3934/dcdsb.2001.1.29 |
[10] |
Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589 |
[11] |
Agust Sverrir Egilsson. On embedding the $1:1:2$ resonance space in a Poisson manifold. Electronic Research Announcements, 1995, 1: 48-56. |
[12] |
Baiyu Liu, Li Ma. Blow up threshold for a parabolic type equation involving space integral and variational structure. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2169-2183. doi: 10.3934/cpaa.2015.14.2169 |
[13] |
Jianqin Zhou, Wanquan Liu, Xifeng Wang. Structure analysis on the k-error linear complexity for 2n-periodic binary sequences. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1743-1757. doi: 10.3934/jimo.2017016 |
[14] |
Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2315-2373. doi: 10.3934/dcds.2017102 |
[15] |
Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018 |
[16] |
George Avalos, Roberto Triggiani. Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 417-447. doi: 10.3934/dcdss.2009.2.417 |
[17] |
P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure & Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691 |
[18] |
Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122 |
[19] |
Sami Aouaoui, Rahma Jlel. On some elliptic equation in the whole euclidean space $ \mathbb{R}^2 $ with nonlinearities having new exponential growth condition. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4771-4796. doi: 10.3934/cpaa.2020211 |
[20] |
Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]