-
Previous Article
A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena
- JGM Home
- This Issue
-
Next Article
Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory
Geometric arbitrage theory and market dynamics
1. | Core Dynamics GmbH, Scheuchzerstrasse 43, CH-8006, Zurich, Switzerland |
$\bullet$ Write arbitrage as curvature of a principal fibre bundle.
$\bullet$ Parameterize arbitrage strategies by its holonomy.
$\bullet$ Give the Fundamental Theorem of Asset Pricing a differential homotopic characterization.
$\bullet$ Characterize Geometric Arbitrage Theory by five principles and show they are consistent with the classical theory of stochastic finance.
$\bullet$ Derive for a closed market the equilibrium solution for market portfolio and dynamics in the cases where:
  - Arbitrage is allowed but minimized.
  - Arbitrage is not allowed.
$\bullet$ Prove that the no-free-lunch-with-vanishing-risk condition implies the zero curvature condition. The converse is in general not true and additionally requires the Novikov condition for the instantaneous Sharpe Ratio to be satisfied.
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Second Edition, Springer, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[2] |
F. Bellini and M. Frittelli, On the existence of minimax martingale measures, Mathematical Finance, 12 (2002), 1-21.
doi: 10.1111/1467-9965.00001. |
[3] |
T. Björk, Arbitrage Theory in Continuous Time, Oxford Finance, Second Edition, 2004. |
[4] |
T. Björk and H. Hult, A note on Wick products and the fractional Black-Scholes model, Finance & Stochastics, 9 (2005), 197-209.
doi: 10.1007/s00780-004-0144-5. |
[5] |
D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley Publishing, 1981, (republished by Dover 2005). |
[6] |
J. Cresson and S. Darses, Stochastic embedding of dynamical systems, J. Math. Phys., 48 (2007), 072703, 54 pp.
doi: 10.1063/1.2736519. |
[7] |
F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, Springer-Verlag, Berlin, 2006. |
[8] |
B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry-Methods and Applications: Part II. The Geometry and Topology of Manifolds, Graduate Texts in Mathematics, 104. Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4612-1100-6. |
[9] |
B. Dupoyet, H. R. Fiebig and D. P. Musgrov, Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets, Physica A, 389 (2010), 107-116.
doi: 10.1016/j.physa.2009.09.002. |
[10] |
C. Dellachérie and P. A. Meyer, Probabilité et Potentiel II - Théorie des Martingales - Chapitres 5 à 8, Hermann, 1980. |
[11] |
K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Notes Series, 1982. |
[12] |
M. Eméry, Stochastic Calculus on Manifolds-With an Appendix by P. A. Meyer, Springer, 1989.
doi: 10.1007/978-3-642-75051-9. |
[13] |
S. Farinelli and S. Vazquez, Gauge invariance, geometry and arbitrage, The Journal of Investment Strategies, Wiley, Spring, 1 (2012), 23-66. |
[14] |
M. Fei-Te and M. Jin-Long, Solitary wave solutions of nonlinear financial markets: Data-modeling-concept-practicing, Front. Phys. China, 2 (2007), 368-374. |
[15] |
B. Flesaker and L. Hughston, Positive Interest, Risk, 9 (1996), 36-40. |
[16] |
H. Föllmer and A. Schied, Stochastic Finance: An Introduction In Discrete Time, Second Edition, De Gruyter Studies in Mathematics, 2004.
doi: 10.1515/9783110212075. |
[17] |
Y. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Theoretical and Mathemtical Physics, Springer, 2011.
doi: 10.1007/978-0-85729-163-9. |
[18] |
W. Hackenbroch and A. Thalmaier, Stochastische Analysis. Eine Einführung in die Theorie der stetigen Semimartingale, Teubner Verlag, 1994.
doi: 10.1007/978-3-663-11527-4. |
[19] |
L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 2003. |
[20] |
E. P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, 38, AMS, 2002.
doi: 10.1090/gsm/038. |
[21] |
P. J. Hunt and J. E. Kennedy, Financial Derivatives in Theory and Practice, Wiley Series in Probability and Statistics, 2004.
doi: 10.1002/0470863617. |
[22] |
K. Ilinski, Gauge geometry of financial markets, J. Phys. A: Math. Gen., 33 (2000), L5-L14.
doi: 10.1088/0305-4470/33/1/102. |
[23] |
K. Ilinski, Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing, Wiley, 2001. |
[24] |
J. D. Jackson, Classical Electrodynamics, Third Edition, Wiley, 1998. |
[25] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Wiley, 1996. |
[26] |
P. N. Malaney, The Index Number Problem: A Differential Geometric Approach, PhD Thesis, Harvard University Economics Department, 1997. |
[27] |
Y. Morisawa, Toward a geometric formulation of triangular arbitrage: An introduction to gauge theory of arbitrage, Progress of Theoretical Physics Supplement, 179 (2009), 209-215.
doi: 10.1143/PTPS.179.209. |
[28] |
E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J. 1967. |
[29] |
Ph. E. Protter, Stochastic Integration and Differential Equations: Version 2.1, Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. |
[30] |
L. C. G. Rogers, Equivalent martingale measures and no-arbitrage, Stochastics, Stochastics Rep., 51 (1994), 41-49.
doi: 10.1080/17442509408833943. |
[31] |
W. Schachermayer, Optimal investment in incomplete markets when wealth may become negative, Annals of Applied Probability, 11 (2001), 694-734.
doi: 10.1214/aoap/1015345346. |
[32] |
L. Schwartz, Semi-martingales Sur des Variétés et Martingales Conformes sur des Variétés Analytiques Complexes, Springer Lecture Notes in Mathematics, 1980. |
[33] |
S. E. Shreve, Stochastic Calculus for Finance, Springer-Verlag, New York, 2004. |
[34] |
M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997. |
[35] |
A. Smith and C. Speed, Gauge Transforms in Stochastic Investment, Proceedings of the 1998 AFIR Colloquim, Cambridge, England, 1998. |
[36] |
S. Sternberg, Lectures On Differential Geometry, Second Edition, Chelsea Publishing Co., New York, 1983. |
[37] |
D. W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, 74, AMS, 2000. |
[38] |
E. Weinstein, Gauge theory and inflation: Enlarging the Wu-Yang Dictionary to a unifying Rosetta Stone for Geometry in Application, Talk given at Perimeter Institute, 2006. |
[39] |
K. Yasue, Stochastic calculus of variations, Journal of Functional Analysis, 41 (1981), 327-340.
doi: 10.1016/0022-1236(81)90079-3. |
[40] |
K. Young, Foreign exchange market as a lattice gauge theory, Am. J. Phys., 67 (1999), p862.
doi: 10.1119/1.19139. |
show all references
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, Second Edition, Springer, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[2] |
F. Bellini and M. Frittelli, On the existence of minimax martingale measures, Mathematical Finance, 12 (2002), 1-21.
doi: 10.1111/1467-9965.00001. |
[3] |
T. Björk, Arbitrage Theory in Continuous Time, Oxford Finance, Second Edition, 2004. |
[4] |
T. Björk and H. Hult, A note on Wick products and the fractional Black-Scholes model, Finance & Stochastics, 9 (2005), 197-209.
doi: 10.1007/s00780-004-0144-5. |
[5] |
D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley Publishing, 1981, (republished by Dover 2005). |
[6] |
J. Cresson and S. Darses, Stochastic embedding of dynamical systems, J. Math. Phys., 48 (2007), 072703, 54 pp.
doi: 10.1063/1.2736519. |
[7] |
F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage, Springer-Verlag, Berlin, 2006. |
[8] |
B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry-Methods and Applications: Part II. The Geometry and Topology of Manifolds, Graduate Texts in Mathematics, 104. Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4612-1100-6. |
[9] |
B. Dupoyet, H. R. Fiebig and D. P. Musgrov, Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets, Physica A, 389 (2010), 107-116.
doi: 10.1016/j.physa.2009.09.002. |
[10] |
C. Dellachérie and P. A. Meyer, Probabilité et Potentiel II - Théorie des Martingales - Chapitres 5 à 8, Hermann, 1980. |
[11] |
K. D. Elworthy, Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Notes Series, 1982. |
[12] |
M. Eméry, Stochastic Calculus on Manifolds-With an Appendix by P. A. Meyer, Springer, 1989.
doi: 10.1007/978-3-642-75051-9. |
[13] |
S. Farinelli and S. Vazquez, Gauge invariance, geometry and arbitrage, The Journal of Investment Strategies, Wiley, Spring, 1 (2012), 23-66. |
[14] |
M. Fei-Te and M. Jin-Long, Solitary wave solutions of nonlinear financial markets: Data-modeling-concept-practicing, Front. Phys. China, 2 (2007), 368-374. |
[15] |
B. Flesaker and L. Hughston, Positive Interest, Risk, 9 (1996), 36-40. |
[16] |
H. Föllmer and A. Schied, Stochastic Finance: An Introduction In Discrete Time, Second Edition, De Gruyter Studies in Mathematics, 2004.
doi: 10.1515/9783110212075. |
[17] |
Y. E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Theoretical and Mathemtical Physics, Springer, 2011.
doi: 10.1007/978-0-85729-163-9. |
[18] |
W. Hackenbroch and A. Thalmaier, Stochastische Analysis. Eine Einführung in die Theorie der stetigen Semimartingale, Teubner Verlag, 1994.
doi: 10.1007/978-3-663-11527-4. |
[19] |
L. Hörmander, The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis, Springer, 2003. |
[20] |
E. P. Hsu, Stochastic Analysis on Manifolds, Graduate Studies in Mathematics, 38, AMS, 2002.
doi: 10.1090/gsm/038. |
[21] |
P. J. Hunt and J. E. Kennedy, Financial Derivatives in Theory and Practice, Wiley Series in Probability and Statistics, 2004.
doi: 10.1002/0470863617. |
[22] |
K. Ilinski, Gauge geometry of financial markets, J. Phys. A: Math. Gen., 33 (2000), L5-L14.
doi: 10.1088/0305-4470/33/1/102. |
[23] |
K. Ilinski, Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing, Wiley, 2001. |
[24] |
J. D. Jackson, Classical Electrodynamics, Third Edition, Wiley, 1998. |
[25] |
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Volume I, Wiley, 1996. |
[26] |
P. N. Malaney, The Index Number Problem: A Differential Geometric Approach, PhD Thesis, Harvard University Economics Department, 1997. |
[27] |
Y. Morisawa, Toward a geometric formulation of triangular arbitrage: An introduction to gauge theory of arbitrage, Progress of Theoretical Physics Supplement, 179 (2009), 209-215.
doi: 10.1143/PTPS.179.209. |
[28] |
E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, Princeton, N.J. 1967. |
[29] |
Ph. E. Protter, Stochastic Integration and Differential Equations: Version 2.1, Stochastic Modelling and Applied Probability, 21. Springer-Verlag, Berlin, 2005. |
[30] |
L. C. G. Rogers, Equivalent martingale measures and no-arbitrage, Stochastics, Stochastics Rep., 51 (1994), 41-49.
doi: 10.1080/17442509408833943. |
[31] |
W. Schachermayer, Optimal investment in incomplete markets when wealth may become negative, Annals of Applied Probability, 11 (2001), 694-734.
doi: 10.1214/aoap/1015345346. |
[32] |
L. Schwartz, Semi-martingales Sur des Variétés et Martingales Conformes sur des Variétés Analytiques Complexes, Springer Lecture Notes in Mathematics, 1980. |
[33] |
S. E. Shreve, Stochastic Calculus for Finance, Springer-Verlag, New York, 2004. |
[34] |
M. Šilhavý, The Mechanics and Thermodynamics of Continuous Media, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997. |
[35] |
A. Smith and C. Speed, Gauge Transforms in Stochastic Investment, Proceedings of the 1998 AFIR Colloquim, Cambridge, England, 1998. |
[36] |
S. Sternberg, Lectures On Differential Geometry, Second Edition, Chelsea Publishing Co., New York, 1983. |
[37] |
D. W. Stroock, An Introduction to the Analysis of Paths on a Riemannian Manifold, Mathematical Surveys and Monographs, 74, AMS, 2000. |
[38] |
E. Weinstein, Gauge theory and inflation: Enlarging the Wu-Yang Dictionary to a unifying Rosetta Stone for Geometry in Application, Talk given at Perimeter Institute, 2006. |
[39] |
K. Yasue, Stochastic calculus of variations, Journal of Functional Analysis, 41 (1981), 327-340.
doi: 10.1016/0022-1236(81)90079-3. |
[40] |
K. Young, Foreign exchange market as a lattice gauge theory, Am. J. Phys., 67 (1999), p862.
doi: 10.1119/1.19139. |
[1] |
Tomasz R. Bielecki, Igor Cialenco, Marek Rutkowski. Arbitrage-free pricing of derivatives in nonlinear market models. Probability, Uncertainty and Quantitative Risk, 2018, 3 (0) : 2-. doi: 10.1186/s41546-018-0027-x |
[2] |
Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002 |
[3] |
Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 |
[4] |
Rod Cross, Victor Kozyakin. Double exponential instability of triangular arbitrage systems. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 349-376. doi: 10.3934/dcdsb.2013.18.349 |
[5] |
Alexander Schied, Iryna Voloshchenko. Pathwise no-arbitrage in a class of Delta hedging strategies. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 3-. doi: 10.1186/s41546-016-0003-2 |
[6] |
Lisa C Flatley, Robert S MacKay, Michael Waterson. Optimal strategies for operating energy storage in an arbitrage or smoothing market. Journal of Dynamics and Games, 2016, 3 (4) : 371-398. doi: 10.3934/jdg.2016020 |
[7] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[8] |
María Teresa V. Martínez-Palacios, Adrián Hernández-Del-Valle, Ambrosio Ortiz-Ramírez. On the pricing of Asian options with geometric average of American type with stochastic interest rate: A stochastic optimal control approach. Journal of Dynamics and Games, 2019, 6 (1) : 53-64. doi: 10.3934/jdg.2019004 |
[9] |
Dániel Ágoston Bálint, Martin Schweizer. Making no-arbitrage discounting-invariant: A new FTAP version beyond NFLVR and NUPBR. Frontiers of Mathematical Finance, , () : -. doi: 10.3934/fmf.2021010 |
[10] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[11] |
Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397 |
[12] |
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 |
[13] |
Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304 |
[14] |
Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605 |
[15] |
Łukasz Rudnicki. Geophysics and Stuart vortices on a sphere meet differential geometry. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2479-2493. doi: 10.3934/cpaa.2022075 |
[16] |
Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349 |
[17] |
Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010 |
[18] |
Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial and Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043 |
[19] |
Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control and Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375 |
[20] |
Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial and Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]