-
Previous Article
Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures
- JGM Home
- This Issue
-
Next Article
Geometric arbitrage theory and market dynamics
A unifying mechanical equation with applications to non-holonomic constraints and dissipative phenomena
1. | Dipartimento di Matematica e Informatica "U. Dini", Università degli Studi di Firenze, Via S. Marta 3, I-50139 Firenze, Italy |
References:
[1] |
H. Bateman, On dissipative systems and related variational principles, Physical Review, 38 (1931), 815-819.
doi: 10.1103/PhysRev.38.815. |
[2] |
P. Bauer, Dissipative dynamical systems I, Proc. Natl. Acad. Sci. USA, 17 (1931), 311-314.
doi: 10.1073/pnas.17.5.311. |
[3] |
A. M. Bloch, J. Baillieul, P. Crouch and J. Marsden, Nonholonomic Mechanics and Control, Springer, New York, 2003.
doi: 10.1007/b97376. |
[4] |
A. M. Bloch and A. G. Rojo, Quantization of a nonholonomic system, Phys. Rev. Lett., 101 (2008), 030402, 4pp.
doi: 10.1103/PhysRevLett.101.030402. |
[5] |
I. Bucataru and R. Miron, The geometry of systems of third order differential equations induced by second order regular Lagrangians, Mediterr. J. Math., 6 (2009), 483-500.
doi: 10.1007/s00009-009-0020-9. |
[6] |
A. Carati, A Lagrangian Formulation for the Abraham-Lorentz-Dirac Equation, vol. Quaderno del GFNM n. 54, 1998. |
[7] |
H. V. Craig, On a generalized tangent vector, Amer. J. Math., 57 (1935), 457-462.
doi: 10.2307/2371220. |
[8] |
H. Dekker, Classical and quantum mechanics of the damped harmonic oscillator, Phys. Rep., 80 (1981), 1-112.
doi: 10.1016/0370-1573(81)90033-8. |
[9] |
H. H. Denman, On linear friction in Lagrange's equation, Am. J. Phys., 34 (1966), 1147-1149.
doi: 10.1119/1.1972535. |
[10] |
C. R. Galley, Classical mechanics of nonconservative systems, Phys. Rev. Lett., 110 (2013), 174301.
doi: 10.1103/PhysRevLett.110.174301. |
[11] |
J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1975. |
[12] |
Y. Kuwahara, Y. Nakamura and Y. Yamanaka, From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems, Phys. Lett. A, 377 (2013), 3102-3105.
doi: 10.1016/j.physleta.2013.10.001. |
[13] |
T. Levi-Civita, Sul moto di un sistema di punti materiali soggetti a resistenze proporzionali alle rispettive velocità, Atti Ist. Ven., 54 (1895/96), 1004-1008, Serie 7. |
[14] |
A. Lurie, Analytical Mechanics, Springer, Berlin, 2002.
doi: 10.1007/978-3-540-45677-3. |
[15] |
C.-M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42 (1998), 211-229.
doi: 10.1016/S0034-4877(98)80011-6. |
[16] |
R. Y. Matsyuk, Higher order variational origin of the Dixon's system and its relation to the quasi-classical 'zitterbewegung' in general relativity, Diff. Geom. Appl., 29 (2011), S149-S155.
doi: 10.1016/j.difgeo.2011.04.020. |
[17] |
E. Minguzzi, Rayleigh's dissipation function at work, Eur. J. Phys., 36 (2015), 035014, arXiv:1409.4041.
doi: 10.1088/0143-0807/36/3/035014. |
[18] |
J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, vol. 33 of Translations of Mathematical Monographs, American Mathematical Society, 2004. |
[19] |
F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890-1899.
doi: 10.1103/PhysRevE.53.1890. |
[20] |
P. Riewe, Relativistic classical spinning-particle mechanics, Nuovo Cimento B, 8 (1972), 271-277.
doi: 10.1007/BF02743522. |
[21] |
H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Van Nostrand, New York, 1966. |
[22] |
J. L. Synge, Some intrinsic and derived vectors in a Kawaguchi space, Amer. J. Math., 57 (1935), 679-691.
doi: 10.2307/2371196. |
[23] |
C. Yuce, A. Kilic and A. Coruh, Inverted oscillator, Phys. Scr., 74 (2006), 114-116.
doi: 10.1088/0031-8949/74/1/014. |
show all references
References:
[1] |
H. Bateman, On dissipative systems and related variational principles, Physical Review, 38 (1931), 815-819.
doi: 10.1103/PhysRev.38.815. |
[2] |
P. Bauer, Dissipative dynamical systems I, Proc. Natl. Acad. Sci. USA, 17 (1931), 311-314.
doi: 10.1073/pnas.17.5.311. |
[3] |
A. M. Bloch, J. Baillieul, P. Crouch and J. Marsden, Nonholonomic Mechanics and Control, Springer, New York, 2003.
doi: 10.1007/b97376. |
[4] |
A. M. Bloch and A. G. Rojo, Quantization of a nonholonomic system, Phys. Rev. Lett., 101 (2008), 030402, 4pp.
doi: 10.1103/PhysRevLett.101.030402. |
[5] |
I. Bucataru and R. Miron, The geometry of systems of third order differential equations induced by second order regular Lagrangians, Mediterr. J. Math., 6 (2009), 483-500.
doi: 10.1007/s00009-009-0020-9. |
[6] |
A. Carati, A Lagrangian Formulation for the Abraham-Lorentz-Dirac Equation, vol. Quaderno del GFNM n. 54, 1998. |
[7] |
H. V. Craig, On a generalized tangent vector, Amer. J. Math., 57 (1935), 457-462.
doi: 10.2307/2371220. |
[8] |
H. Dekker, Classical and quantum mechanics of the damped harmonic oscillator, Phys. Rep., 80 (1981), 1-112.
doi: 10.1016/0370-1573(81)90033-8. |
[9] |
H. H. Denman, On linear friction in Lagrange's equation, Am. J. Phys., 34 (1966), 1147-1149.
doi: 10.1119/1.1972535. |
[10] |
C. R. Galley, Classical mechanics of nonconservative systems, Phys. Rev. Lett., 110 (2013), 174301.
doi: 10.1103/PhysRevLett.110.174301. |
[11] |
J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, 1975. |
[12] |
Y. Kuwahara, Y. Nakamura and Y. Yamanaka, From classical mechanics with doubled degrees of freedom to quantum field theory for nonconservative systems, Phys. Lett. A, 377 (2013), 3102-3105.
doi: 10.1016/j.physleta.2013.10.001. |
[13] |
T. Levi-Civita, Sul moto di un sistema di punti materiali soggetti a resistenze proporzionali alle rispettive velocità, Atti Ist. Ven., 54 (1895/96), 1004-1008, Serie 7. |
[14] |
A. Lurie, Analytical Mechanics, Springer, Berlin, 2002.
doi: 10.1007/978-3-540-45677-3. |
[15] |
C.-M. Marle, Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., 42 (1998), 211-229.
doi: 10.1016/S0034-4877(98)80011-6. |
[16] |
R. Y. Matsyuk, Higher order variational origin of the Dixon's system and its relation to the quasi-classical 'zitterbewegung' in general relativity, Diff. Geom. Appl., 29 (2011), S149-S155.
doi: 10.1016/j.difgeo.2011.04.020. |
[17] |
E. Minguzzi, Rayleigh's dissipation function at work, Eur. J. Phys., 36 (2015), 035014, arXiv:1409.4041.
doi: 10.1088/0143-0807/36/3/035014. |
[18] |
J. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, vol. 33 of Translations of Mathematical Monographs, American Mathematical Society, 2004. |
[19] |
F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E, 53 (1996), 1890-1899.
doi: 10.1103/PhysRevE.53.1890. |
[20] |
P. Riewe, Relativistic classical spinning-particle mechanics, Nuovo Cimento B, 8 (1972), 271-277.
doi: 10.1007/BF02743522. |
[21] |
H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Van Nostrand, New York, 1966. |
[22] |
J. L. Synge, Some intrinsic and derived vectors in a Kawaguchi space, Amer. J. Math., 57 (1935), 679-691.
doi: 10.2307/2371196. |
[23] |
C. Yuce, A. Kilic and A. Coruh, Inverted oscillator, Phys. Scr., 74 (2006), 114-116.
doi: 10.1088/0031-8949/74/1/014. |
[1] |
A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471 |
[2] |
Ghulam Rasool, Anum Shafiq, Chaudry Masood Khalique. Marangoni forced convective Casson type nanofluid flow in the presence of Lorentz force generated by Riga plate. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2517-2533. doi: 10.3934/dcdss.2021059 |
[3] |
Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic and Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687 |
[4] |
José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic and Related Models, 2022, 15 (3) : 355-384. doi: 10.3934/krm.2021052 |
[5] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[6] |
T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265 |
[7] |
Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165 |
[8] |
T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure and Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415 |
[9] |
Paolo Maremonti. A remark on the Stokes problem in Lorentz spaces. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1323-1342. doi: 10.3934/dcdss.2013.6.1323 |
[10] |
Manuel Gutiérrez. Lorentz geometry technique in nonimaging optics. Conference Publications, 2003, 2003 (Special) : 386-392. doi: 10.3934/proc.2003.2003.386 |
[11] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[12] |
Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87 |
[13] |
María Barbero Liñán, Hernán Cendra, Eduardo García Toraño, David Martín de Diego. Morse families and Dirac systems. Journal of Geometric Mechanics, 2019, 11 (4) : 487-510. doi: 10.3934/jgm.2019024 |
[14] |
Françoise Pène. Asymptotic of the number of obstacles visited by the planar Lorentz process. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 567-587. doi: 10.3934/dcds.2009.24.567 |
[15] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[16] |
Françoise Pène. Self-intersections of trajectories of the Lorentz process. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4781-4806. doi: 10.3934/dcds.2014.34.4781 |
[17] |
Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006 |
[18] |
Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015 |
[19] |
Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004 |
[20] |
Liejune Shiau, Roland Glowinski. Operator splitting method for friction constrained dynamical systems. Conference Publications, 2005, 2005 (Special) : 806-815. doi: 10.3934/proc.2005.2005.806 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]