- Previous Article
- JGM Home
- This Issue
-
Next Article
Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures
Invariant metrics on Lie groups
1. | The University of Toledo, 2801 W Bancroft St., Toledo, OH 43606 |
References:
[1] |
Handbook of Geometric Analysis, 3, International Press, Boston, 2010. Google Scholar |
[2] |
Czechoslovak Math. J., 65 (2015), 21-59.
doi: 10.1007/s10587-015-0159-4. |
[3] |
1st ed., Springer, Berlin, Heidelberg, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp.
doi: 10.1142/S1402925112500155. |
[5] |
J. Geom. Phys., 62 (2012), 1600-1610.
doi: 10.1016/j.geomphys.2012.03.003. |
[6] |
Monatsh. Math., 176 (2015), 219-239.
doi: 10.1007/s00605-014-0692-5. |
[7] |
J. Geom. Phys., 82 (2014), 132-144.
doi: 10.1016/j.geomphys.2014.04.007. |
[8] |
Journal of Geometry and Mechanics, 3 (2011), 323-335.
doi: 10.3934/jgm.2011.3.323. |
[9] |
Manuscripta Math., 135 (2011), 229-243.
doi: 10.1007/s00229-010-0419-4. |
[10] |
Advances in Math., 21 (1976), 293-329.
doi: 10.1016/S0001-8708(76)80002-3. |
[11] |
J. Math. Phys., 17 (1976), 986-994.
doi: 10.1063/1.522992. |
[12] |
Canad. Math. Bull., 55 (2012), 870-881.
doi: 10.4153/CMB-2011-145-6. |
show all references
References:
[1] |
Handbook of Geometric Analysis, 3, International Press, Boston, 2010. Google Scholar |
[2] |
Czechoslovak Math. J., 65 (2015), 21-59.
doi: 10.1007/s10587-015-0159-4. |
[3] |
1st ed., Springer, Berlin, Heidelberg, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp.
doi: 10.1142/S1402925112500155. |
[5] |
J. Geom. Phys., 62 (2012), 1600-1610.
doi: 10.1016/j.geomphys.2012.03.003. |
[6] |
Monatsh. Math., 176 (2015), 219-239.
doi: 10.1007/s00605-014-0692-5. |
[7] |
J. Geom. Phys., 82 (2014), 132-144.
doi: 10.1016/j.geomphys.2014.04.007. |
[8] |
Journal of Geometry and Mechanics, 3 (2011), 323-335.
doi: 10.3934/jgm.2011.3.323. |
[9] |
Manuscripta Math., 135 (2011), 229-243.
doi: 10.1007/s00229-010-0419-4. |
[10] |
Advances in Math., 21 (1976), 293-329.
doi: 10.1016/S0001-8708(76)80002-3. |
[11] |
J. Math. Phys., 17 (1976), 986-994.
doi: 10.1063/1.522992. |
[12] |
Canad. Math. Bull., 55 (2012), 870-881.
doi: 10.4153/CMB-2011-145-6. |
[1] |
Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020 |
[2] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[3] |
Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008 |
[4] |
Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021 |
[5] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[6] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[7] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[8] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021063 |
[9] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[10] |
Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021088 |
[11] |
Philippe Jouan, Ronald Manríquez. Solvable approximations of 3-dimensional almost-Riemannian structures. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021023 |
[12] |
Hyunjin Ahn, Seung-Yeal Ha, Woojoo Shim. Emergent dynamics of a thermodynamic Cucker-Smale ensemble on complete Riemannian manifolds. Kinetic & Related Models, 2021, 14 (2) : 323-351. doi: 10.3934/krm.2021007 |
[13] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[14] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[15] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[16] |
Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021053 |
[17] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[18] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[19] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[20] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]