- Previous Article
- JGM Home
- This Issue
-
Next Article
Canonoid and Poissonoid transformations, symmetries and biHamiltonian structures
Invariant metrics on Lie groups
1. | The University of Toledo, 2801 W Bancroft St., Toledo, OH 43606 |
References:
[1] |
M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds, Handbook of Geometric Analysis, 3, International Press, Boston, 2010. |
[2] |
T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds, Czechoslovak Math. J., 65 (2015), 21-59.
doi: 10.1007/s10587-015-0159-4. |
[3] |
A. Besse, Einstein Manifolds, 1st ed., Springer, Berlin, Heidelberg, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups, J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp.
doi: 10.1142/S1402925112500155. |
[5] |
Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups, J. Geom. Phys., 62 (2012), 1600-1610.
doi: 10.1016/j.geomphys.2012.03.003. |
[6] |
P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups, Monatsh. Math., 176 (2015), 219-239.
doi: 10.1007/s00605-014-0692-5. |
[7] |
M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys., 82 (2014), 132-144.
doi: 10.1016/j.geomphys.2014.04.007. |
[8] |
F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups, Journal of Geometry and Mechanics, 3 (2011), 323-335.
doi: 10.3934/jgm.2011.3.323. |
[9] |
H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243.
doi: 10.1007/s00229-010-0419-4. |
[10] |
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.
doi: 10.1016/S0001-8708(76)80002-3. |
[11] |
J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986-994.
doi: 10.1063/1.522992. |
[12] |
H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups, Canad. Math. Bull., 55 (2012), 870-881.
doi: 10.4153/CMB-2011-145-6. |
show all references
References:
[1] |
M. Anderson, A survey of Einstein Metrics on 4-Dimensional Manifolds, Handbook of Geometric Analysis, 3, International Press, Boston, 2010. |
[2] |
T. Arias-Marco and O. Kowalski, Classification of 4-dimensional homogeneous weakly Einstein manifolds, Czechoslovak Math. J., 65 (2015), 21-59.
doi: 10.1007/s10587-015-0159-4. |
[3] |
A. Besse, Einstein Manifolds, 1st ed., Springer, Berlin, Heidelberg, New York, 1987.
doi: 10.1007/978-3-540-74311-8. |
[4] |
S. Chen and K. Liang, Left-invariant pseudo-Einstein metrics on Lie groups, J. Nonlinear Math. Phys., 19 (2012), 1250015, 11pp.
doi: 10.1142/S1402925112500155. |
[5] |
Z. Chen, D. Hou and C. Bai, A left-symmetric algebraic approach to left invariant flat pseudo-metrics on Lie groups, J. Geom. Phys., 62 (2012), 1600-1610.
doi: 10.1016/j.geomphys.2012.03.003. |
[6] |
P. Gadea, J. González-Dávila and J. Oubina, Cyclic metric Lie groups, Monatsh. Math., 176 (2015), 219-239.
doi: 10.1007/s00605-014-0692-5. |
[7] |
M. Guediri, Novikov algebras carrying an invariant Lorentzian symmetric bilinear form, J. Geom. Phys., 82 (2014), 132-144.
doi: 10.1016/j.geomphys.2014.04.007. |
[8] |
F. Hindeleh and G. Thompson, Killing's equations for invariant metrics on Lie groups, Journal of Geometry and Mechanics, 3 (2011), 323-335.
doi: 10.3934/jgm.2011.3.323. |
[9] |
H. Kodama, A. Takahara and H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling, Manuscripta Math., 135 (2011), 229-243.
doi: 10.1007/s00229-010-0419-4. |
[10] |
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math., 21 (1976), 293-329.
doi: 10.1016/S0001-8708(76)80002-3. |
[11] |
J. Patera, R. T. Sharp, P. Winternitz and H. Zassenhaus, Invariants of real low dimension Lie algebras, J. Math. Phys., 17 (1976), 986-994.
doi: 10.1063/1.522992. |
[12] |
H. Wang and S. Deng, Left invariant Einstein-Randers metrics on compact Lie groups, Canad. Math. Bull., 55 (2012), 870-881.
doi: 10.4153/CMB-2011-145-6. |
[1] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
[2] |
Firas Hindeleh, Gerard Thompson. Killing's equations for invariant metrics on Lie groups. Journal of Geometric Mechanics, 2011, 3 (3) : 323-335. doi: 10.3934/jgm.2011.3.323 |
[3] |
Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239 |
[4] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[5] |
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066 |
[6] |
Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001 |
[7] |
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 |
[8] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[9] |
Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453 |
[10] |
Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977 |
[11] |
Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495 |
[12] |
Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013 |
[13] |
Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004 |
[14] |
Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052 |
[15] |
Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312 |
[16] |
Mark Wilkinson. A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles. Kinetic and Related Models, 2022, 15 (2) : 283-315. doi: 10.3934/krm.2022008 |
[17] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123 |
[18] |
Patrick Foulon, Vladimir S. Matveev. Zermelo deformation of finsler metrics by killing vector fields. Electronic Research Announcements, 2018, 25: 1-7. doi: 10.3934/era.2018.25.001 |
[19] |
Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2803-2812. doi: 10.3934/dcdss.2020219 |
[20] |
Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]