\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group

Abstract Related Papers Cited by
  • Let $M$ be a closed symplectic manifold with compatible symplectic form and Riemannian metric $g$. Here it is shown that the exponential mapping of the weak $L^{2}$ metric on the group of symplectic diffeomorphisms of $M$ is a non-linear Fredholm map of index zero. The result provides an interesting contrast between the $L^{2}$ metric and Hofer's metric as well as an intriguing difference between the $L^{2}$ geometry of the symplectic diffeomorphism group and the volume-preserving diffeomorphism group.
    Mathematics Subject Classification: Primary: 35Q05, 35Q83, 47H99, 58C99, 37K65; Secondary: 82D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, On the Differential Geometry of Infinite-Dimensional Lie Groups and its appliction to the Hydrodynamics of Perfect Fluids, Vladimir I. Arnold: Collected Works, Vol. 2, Springer, New York, 2014.

    [2]

    V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, Springer-Verlag, 1998.

    [3]

    D. Bao, J. Lafontaine and T. Ratiu, On a non-linear equation related to the geometry of the diffeomorphism group, Pacific Journal of Mathematics, 158 (1993), 223-242.doi: 10.2140/pjm.1993.158.223.

    [4]

    D. Ebin, Geodesics on the symplectomorphism group, Journal of Geometric and Functional Analysis, 22 (2012), 202-212.doi: 10.1007/s00039-012-0150-2.

    [5]

    D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Annals of Mathematics, 92 (1970), 102-163.doi: 10.2307/1970699.

    [6]

    D. Ebin, G. Misiołek and S. Preston, Singularities of the exponential map on the volume-preserving diffeomorphism group, Journal of Geometric and Functional Analysis, 16 (2006), 850-868.doi: 10.1007/s00039-006-0573-8.

    [7]

    D. Holm and C. Tronci, The geodesic vlasov equation and its integrable moment closures, Journal of Geometric Mechanics, 1 (2009), 181-208.doi: 10.3934/jgm.2009.1.181.

    [8]

    H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Springer, 1994.doi: 10.1007/978-3-0348-8540-9.

    [9]

    T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1966.

    [10]

    J. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica D, 4 (1982), 394-406.doi: 10.1016/0167-2789(82)90043-4.

    [11]

    J. Marsden, A. Weinstein, R. Schmid and R. Spencer, Hamiltonian systems and symmetry groups with applications to plasma physics, Atti della Accademia delle Scienze di Torino. Classe di Scienze Fisiche, Matematiche e Naturali, 117 (1983), 289-340.

    [12]

    G. Misiolek, Stability of flows of ideal fluids and the geometry of the groups of diffeomorphisms, Indiana University Mathematics Journal, 42 (1993), 215-235.doi: 10.1512/iumj.1993.42.42011.

    [13]

    G. Misiołek, Conjugate points in $\mathcalD_{\mu}(\mathbbT^{2})$, Proceedings of the American Mathematics Society, 124 (1996), 977-982.doi: 10.1090/S0002-9939-96-03149-8.

    [14]

    G. Misiołek and S. Preston, Fredholm properties of riemannian exponential maps on diffeomorphism groups, Inventiones Mathematicae, 179 (2010), 191-227.doi: 10.1007/s00222-009-0217-3.

    [15]

    C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966.

    [16]

    P. J. Morrison, The Maxwell-Vlasov equations as a continuous Hamiltonian system, Physics Letters A, 80 (1980), 383-386.doi: 10.1016/0375-9601(80)90776-8.

    [17]

    S. Preston, For ideal fluids, Eulerian and Lagrangian instabilities are equivalent, Journal of Geometric and Functional Analysis, 14 (2004), 1044-1062.doi: 10.1007/s00039-004-0482-7.

    [18]

    S. Preston, On the volumorphism group, the first conjugate point is the hardest, Communications in Mathematical Physics, 267 (2006), 493-513.doi: 10.1007/s00220-006-0070-9.

    [19]

    T. Ratiu and R. Schmid, Three remarkable diffeomorphism groups, Mathematische Zeitschrift, 177 (1981), 81-100.doi: 10.1007/BF01214340.

    [20]

    R. Schmid, Infinite dimensional lie groups and algebras in mathematical physics, Hindawi Advances in Mathematical Physics, 2010 (2010), Art. ID 280362, 35 pp.

    [21]

    A. Shnirelman, Generalized fluid flows, their approximations and applications, Journal of Geometric and Functional Analysis, 4 (1994), 586-620.doi: 10.1007/BF01896409.

    [22]

    S. Smale, An infinite dimensional version of Sard's Theorem, American Journal of Mathematics, 87 (1965), 861-866.doi: 10.2307/2373250.

    [23]

    N. K. Smolentsev, A Biinvariant Metric on the Group of Symplectic Diffeomorphisms and the Equation $\partial_t\DeltaF = {\DeltaF,F}$, Translated from Sibirskii Matematicheskii Shurnal, 27 (1986), 150-156.

    [24]

    M. Taylor, Partial Differential Equations I, Basic Theory, Springer, 2011.doi: 10.1007/978-1-4419-7055-8.

    [25]

    I. Ustilovsky, Conjugate points on geodesics of hofer's metric, Differential Geometry and its Applications, 6 (1996), 327-342.doi: 10.1016/S0926-2245(96)00027-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(214) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return