March  2017, 9(1): 91-130. doi: 10.3934/jgm.2017004

Uniform motions in central fields

1. 

Dept. of Mathematics, Faculty of Science, University of Ostrava, 30. dubna 22,701 03, Ostrava, Czech Republic

2. 

Dept. of Mathematics and Descriptive Geometry, VŠSB -Technical University of Ostrava, 17. listopadu 15,708 33, Ostrava, Czech Republic

Received  March 2016 Revised  January 2017 Published  March 2017

Fund Project: Both authors appreciate support of their departments.

We present a theoretical problem of uniform motions, i.e. motions with constant magnitude of the velocity in central fields as a nonholonomic system of one particle with a nonlinear constraint. The concept of the article is in analogy with the recent paper [21]. The problem is analysed from the kinematic and dynamic point of view. The corresponding reduced equation of motion in the Newtonian central gravitational field is solved numerically. Appropriate trajectories for suitable initial conditions are presented. Symmetries and conservation laws are investigated using the concept of constrained Noetherian symmetry [9] and the corresponding constrained Noetherian conservation law. Isotachytonic version of the conservation law of mechanical energy is found as one of the corresponding constraint Noetherian conservation law of this nonholonomic system.

Citation: Martin Swaczyna, Petr Volný. Uniform motions in central fields. Journal of Geometric Mechanics, 2017, 9 (1) : 91-130. doi: 10.3934/jgm.2017004
References:
[1] A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003.  doi: 10.1007/b97376_5.  Google Scholar
[2]

M. Brdička and A. Hladĺk, Theoretical Mechanics, Academia, Praha, 1987 (in Czech). Google Scholar

[3] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005.  doi: 10.1007/978-1-4899-7276-7.  Google Scholar
[4]

Yu. F. Golubev, Motion with a constant velocity modulus in a central gravitational field, J. Appl. Math. Mech., 66 (2002), 1001-1013 (English translation), Prikl. Mat. Mekh., 66 (2002), 1052-1065 (in Russian). doi: 10.1016/s0021-8928(02)00141-7.  Google Scholar

[5]

J. Janová and J. Musilová, Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion, Int. J. Non-Linear Mechanics, 44 (2009), 98-105.  doi: 10.1016/j.ijnonlinmec.2008.09.002.  Google Scholar

[6]

W. S. Koon and J. E. Marsden, The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic system, Rep. Math. Phys., 40 (1997), 21-62.  doi: 10.1016/S0034-4877(97)85617-0.  Google Scholar

[7]

O. Krupková, Mechanical systems with nonholonomic constraints, J. Math. Phys., 38 (1997), 5098-5126.  doi: 10.1063/1.532196.  Google Scholar

[8]

O. Krupková, Higher order mechanical systems with constraints, J. Math. Phys., 41 (2000), 5304-5324.  doi: 10.1063/1.533411.  Google Scholar

[9]

O. Krupková, Noether Theorem, 90 years on, in Geometry and Physics: XVII International Fall Workshop (eds. F. Etayo, M. Fioravanti and R. Santamarĺa), AIP Conference Proceedings, 1130 (2009), 159-170. doi: 10.1063/1.3146232.  Google Scholar

[10]

O. Krupková and J. Musilová, The relativistic particle as a mechanical system with nonlinear constraints, J. Phys. A: Math. Gen., 34 (2001), 3859-3875.  doi: 10.1088/0305-4470/34/18/313.  Google Scholar

[11]

O. Krupková and P. Volný, Differential equations with constraints in jet bundles: Lagrangian and Hamiltonian systems, Lobachevskii J. Math., 23 (2006), 95-150, http://www.mathnet.ru/links/09b54373abba73adc8935fc2403fc66d/ljm19.pdf. Google Scholar

[12]

M. de LeónJ. C. Marrero and D. M. de Diego, Mechanical systems with nonlinear constraints, Int. J. Theor. Phys., 36 (1997), 979-995.  doi: 10.1007/BF02435796.  Google Scholar

[13]

M. de LeónJ. C. Marrero and D. M. de Diego, Non-holonomic Lagrangian systems in jet manifolds, J. Phys. A: Math. Gen., 30 (1997), 1167-1190.  doi: 10.1088/0305-4470/30/4/018.  Google Scholar

[14]

J. E. Marsden and T. S. Ratio, Introduction to Mechanics and Symmetry, 2nded., Texts in Applied Mathematics 17, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[15]

J. C. Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793, Springer, Berlin, 2002. doi: 10.1007/b84020.  Google Scholar

[16]

J. C. MonforteM. de LeónJ. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Continuous Dynam. Systems -A, 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[17]

Ju. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs 33, American Mathematical Society, Rhode Island, 1972.  Google Scholar

[18]

C. M. Roithmayr and D. H. Hodges, Forces associated with non-linear non-holonomic constraint equations, Int. J. Nonlinear Mech., 45 (2010), 357-369.  doi: 10.1016/j.ijnonlinmec.2009.12.009.  Google Scholar

[19]

M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order, in Geometry and Physics: XIX International Fall Workshop (eds. C. Herdeiro, R. Picken), Melville, New York: American Institute of Physics, AIP Conference Proceedings, 1360 (2011), 164-169. doi: 10.1063/1.3599143.  Google Scholar

[20]

M. Swaczyna, Several examples of nonholonomic mechanical systems, Communications in Math., 19 (2011), 27-56, http://cm.osu.cz/sites/default/files/contents/19-1/cm019-2011-1_27-56.pdf. Google Scholar

[21]

M. Swaczyna and P. Volný, Uniform projectile motion: Dynamics, symmetries and conservation laws, Rep. Math. Phys., 73 (2014), 177-200.  doi: 10.1016/s0034-4877(14)60039-2.  Google Scholar

show all references

References:
[1] A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003.  doi: 10.1007/b97376_5.  Google Scholar
[2]

M. Brdička and A. Hladĺk, Theoretical Mechanics, Academia, Praha, 1987 (in Czech). Google Scholar

[3] F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005.  doi: 10.1007/978-1-4899-7276-7.  Google Scholar
[4]

Yu. F. Golubev, Motion with a constant velocity modulus in a central gravitational field, J. Appl. Math. Mech., 66 (2002), 1001-1013 (English translation), Prikl. Mat. Mekh., 66 (2002), 1052-1065 (in Russian). doi: 10.1016/s0021-8928(02)00141-7.  Google Scholar

[5]

J. Janová and J. Musilová, Non-holonomic mechanics: A geometrical treatment of general coupled rolling motion, Int. J. Non-Linear Mechanics, 44 (2009), 98-105.  doi: 10.1016/j.ijnonlinmec.2008.09.002.  Google Scholar

[6]

W. S. Koon and J. E. Marsden, The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic system, Rep. Math. Phys., 40 (1997), 21-62.  doi: 10.1016/S0034-4877(97)85617-0.  Google Scholar

[7]

O. Krupková, Mechanical systems with nonholonomic constraints, J. Math. Phys., 38 (1997), 5098-5126.  doi: 10.1063/1.532196.  Google Scholar

[8]

O. Krupková, Higher order mechanical systems with constraints, J. Math. Phys., 41 (2000), 5304-5324.  doi: 10.1063/1.533411.  Google Scholar

[9]

O. Krupková, Noether Theorem, 90 years on, in Geometry and Physics: XVII International Fall Workshop (eds. F. Etayo, M. Fioravanti and R. Santamarĺa), AIP Conference Proceedings, 1130 (2009), 159-170. doi: 10.1063/1.3146232.  Google Scholar

[10]

O. Krupková and J. Musilová, The relativistic particle as a mechanical system with nonlinear constraints, J. Phys. A: Math. Gen., 34 (2001), 3859-3875.  doi: 10.1088/0305-4470/34/18/313.  Google Scholar

[11]

O. Krupková and P. Volný, Differential equations with constraints in jet bundles: Lagrangian and Hamiltonian systems, Lobachevskii J. Math., 23 (2006), 95-150, http://www.mathnet.ru/links/09b54373abba73adc8935fc2403fc66d/ljm19.pdf. Google Scholar

[12]

M. de LeónJ. C. Marrero and D. M. de Diego, Mechanical systems with nonlinear constraints, Int. J. Theor. Phys., 36 (1997), 979-995.  doi: 10.1007/BF02435796.  Google Scholar

[13]

M. de LeónJ. C. Marrero and D. M. de Diego, Non-holonomic Lagrangian systems in jet manifolds, J. Phys. A: Math. Gen., 30 (1997), 1167-1190.  doi: 10.1088/0305-4470/30/4/018.  Google Scholar

[14]

J. E. Marsden and T. S. Ratio, Introduction to Mechanics and Symmetry, 2nded., Texts in Applied Mathematics 17, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[15]

J. C. Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics 1793, Springer, Berlin, 2002. doi: 10.1007/b84020.  Google Scholar

[16]

J. C. MonforteM. de LeónJ. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Continuous Dynam. Systems -A, 24 (2009), 213-271.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[17]

Ju. I. Neimark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs 33, American Mathematical Society, Rhode Island, 1972.  Google Scholar

[18]

C. M. Roithmayr and D. H. Hodges, Forces associated with non-linear non-holonomic constraint equations, Int. J. Nonlinear Mech., 45 (2010), 357-369.  doi: 10.1016/j.ijnonlinmec.2009.12.009.  Google Scholar

[19]

M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order, in Geometry and Physics: XIX International Fall Workshop (eds. C. Herdeiro, R. Picken), Melville, New York: American Institute of Physics, AIP Conference Proceedings, 1360 (2011), 164-169. doi: 10.1063/1.3599143.  Google Scholar

[20]

M. Swaczyna, Several examples of nonholonomic mechanical systems, Communications in Math., 19 (2011), 27-56, http://cm.osu.cz/sites/default/files/contents/19-1/cm019-2011-1_27-56.pdf. Google Scholar

[21]

M. Swaczyna and P. Volný, Uniform projectile motion: Dynamics, symmetries and conservation laws, Rep. Math. Phys., 73 (2014), 177-200.  doi: 10.1016/s0034-4877(14)60039-2.  Google Scholar

Figure 1.  Interaction of two bodies
Figure 2.  The initial conditions scheme
Figure 3.  The effective potential of the Newtonian gravitational field
Figure 4.  Infinite motions in the Newtonian gravitational field
Figure 5.  Finite motion in the interval of distances $r\in\langle r_0,r_1\rangle$
Figure 6.  Finite motion at the constant distance $r_0$
Figure 7.  Finite motion in the interval of distances $r\in\langle r_1,r_0\rangle$
Figure 8.  Comparison of trajectories: uniform vs. classical motions
Figure 9.  Modified effective potential of the Newtonian gr. field
Figure 10.  Classification of uniform motions in the Newtonian gr. field
Figure 11.  Perturbed circular motions
Figure 12.  Modified effective potential of the central field (171)
Figure 13.  Sinusoidal spirals
[1]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[2]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[3]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[6]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[7]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[8]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[9]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[10]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[11]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[12]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[13]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[14]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[15]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (83)
  • HTML views (47)
  • Cited by (1)

Other articles
by authors

[Back to Top]