June  2017, 9(2): 157-165. doi: 10.3934/jgm.2017006

The Madelung transform as a momentum map

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

Received  December 2015 Revised  May 2016 Published  May 2017

The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.

Citation: Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006
References:
[1]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.  doi: 10.1088/0951-7715/25/10/2843.  Google Scholar

[2]

B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. Google Scholar

[3]

B. Kolev, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.  doi: 10.3934/dcds.2007.19.555.  Google Scholar

[4]

E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.  doi: 10.1007/BF01400372.  Google Scholar

[5]

J. E. MarsdenT. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.  doi: 10.2307/1999527.  Google Scholar

[6]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[7]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[8]

M.-K. von Renesse, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.  doi: 10.4153/CMB-2011-121-9.  Google Scholar

[9]

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.  doi: 10.4310/jdg/1214437787.  Google Scholar

show all references

References:
[1]

R. CarlesR. Danchin and J.-C. Saut, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.  doi: 10.1088/0951-7715/25/10/2843.  Google Scholar

[2]

B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. Google Scholar

[3]

B. Kolev, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.  doi: 10.3934/dcds.2007.19.555.  Google Scholar

[4]

E. Madelung, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.  doi: 10.1007/BF01400372.  Google Scholar

[5]

J. E. MarsdenT. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.  doi: 10.2307/1999527.  Google Scholar

[6]

J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[7]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.  doi: 10.1016/0167-2789(83)90134-3.  Google Scholar

[8]

M.-K. von Renesse, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.  doi: 10.4153/CMB-2011-121-9.  Google Scholar

[9]

A. Weinstein, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.  doi: 10.4310/jdg/1214437787.  Google Scholar

[1]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[5]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[9]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[11]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[13]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[14]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[15]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[16]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[17]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[18]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[19]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[20]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (108)
  • HTML views (79)
  • Cited by (3)

Other articles
by authors

[Back to Top]