-
Previous Article
Local well-posedness of the EPDiff equation: A survey
- JGM Home
- This Issue
-
Next Article
Computing distances and geodesics between manifold-valued curves in the SRV framework
The Madelung transform as a momentum map
Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada |
The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.
References:
[1] |
R. Carles, R. Danchin and J.-C. Saut,
Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.
doi: 10.1088/0951-7715/25/10/2843. |
[2] |
B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. Google Scholar |
[3] |
B. Kolev,
Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.
doi: 10.3934/dcds.2007.19.555. |
[4] |
E. Madelung,
Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.
doi: 10.1007/BF01400372. |
[5] |
J. E. Marsden, T. Ratiu and A. Weinstein,
Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.
doi: 10.2307/1999527. |
[6] |
J. E. Marsden and T. Ratiu,
Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[7] |
J. E. Marsden and A. Weinstein,
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.
doi: 10.1016/0167-2789(83)90134-3. |
[8] |
M.-K. von Renesse,
An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.
doi: 10.4153/CMB-2011-121-9. |
[9] |
A. Weinstein,
The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.
doi: 10.4310/jdg/1214437787. |
show all references
References:
[1] |
R. Carles, R. Danchin and J.-C. Saut,
Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.
doi: 10.1088/0951-7715/25/10/2843. |
[2] |
B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. Google Scholar |
[3] |
B. Kolev,
Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.
doi: 10.3934/dcds.2007.19.555. |
[4] |
E. Madelung,
Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.
doi: 10.1007/BF01400372. |
[5] |
J. E. Marsden, T. Ratiu and A. Weinstein,
Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.
doi: 10.2307/1999527. |
[6] |
J. E. Marsden and T. Ratiu,
Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[7] |
J. E. Marsden and A. Weinstein,
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.
doi: 10.1016/0167-2789(83)90134-3. |
[8] |
M.-K. von Renesse,
An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.
doi: 10.4153/CMB-2011-121-9. |
[9] |
A. Weinstein,
The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.
doi: 10.4310/jdg/1214437787. |
[1] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[3] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[4] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[5] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[6] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[7] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[8] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[9] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[10] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[11] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[12] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[13] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[14] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[15] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[16] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[17] |
Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115 |
[18] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[19] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[20] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]