-
Previous Article
Local well-posedness of the EPDiff equation: A survey
- JGM Home
- This Issue
-
Next Article
Computing distances and geodesics between manifold-valued curves in the SRV framework
The Madelung transform as a momentum map
Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada |
The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.
References:
[1] |
R. Carles, R. Danchin and J.-C. Saut,
Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.
doi: 10.1088/0951-7715/25/10/2843. |
[2] |
B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. |
[3] |
B. Kolev,
Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.
doi: 10.3934/dcds.2007.19.555. |
[4] |
E. Madelung,
Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.
doi: 10.1007/BF01400372. |
[5] |
J. E. Marsden, T. Ratiu and A. Weinstein,
Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.
doi: 10.2307/1999527. |
[6] |
J. E. Marsden and T. Ratiu,
Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[7] |
J. E. Marsden and A. Weinstein,
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.
doi: 10.1016/0167-2789(83)90134-3. |
[8] |
M.-K. von Renesse,
An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.
doi: 10.4153/CMB-2011-121-9. |
[9] |
A. Weinstein,
The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.
doi: 10.4310/jdg/1214437787. |
show all references
References:
[1] |
R. Carles, R. Danchin and J.-C. Saut,
Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012), 2843-2873.
doi: 10.1088/0951-7715/25/10/2843. |
[2] |
B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress. |
[3] |
B. Kolev,
Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007), 555-574.
doi: 10.3934/dcds.2007.19.555. |
[4] |
E. Madelung,
Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927), 322-326.
doi: 10.1007/BF01400372. |
[5] |
J. E. Marsden, T. Ratiu and A. Weinstein,
Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984), 147-177.
doi: 10.2307/1999527. |
[6] |
J. E. Marsden and T. Ratiu,
Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[7] |
J. E. Marsden and A. Weinstein,
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983), 305-323.
doi: 10.1016/0167-2789(83)90134-3. |
[8] |
M.-K. von Renesse,
An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012), 858-869.
doi: 10.4153/CMB-2011-121-9. |
[9] |
A. Weinstein,
The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983), 523-557.
doi: 10.4310/jdg/1214437787. |
[1] |
Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure and Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028 |
[2] |
Ioannis Konstantoulas. Effective decay of multiple correlations in semidirect product actions. Journal of Modern Dynamics, 2016, 10: 81-111. doi: 10.3934/jmd.2016.10.81 |
[3] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[4] |
José Luis López, Jesús Montejo-Gámez. On viscous quantum hydrodynamics associated with nonlinear Schrödinger-Doebner-Goldin models. Kinetic and Related Models, 2012, 5 (3) : 517-536. doi: 10.3934/krm.2012.5.517 |
[5] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021 |
[6] |
Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184 |
[7] |
Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631 |
[8] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[9] |
Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288 |
[10] |
Shi Jin, Peng Qi. A hybrid Schrödinger/Gaussian beam solver for quantum barriers and surface hopping. Kinetic and Related Models, 2011, 4 (4) : 1097-1120. doi: 10.3934/krm.2011.4.1097 |
[11] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[12] |
Patrizia Pucci. Critical Schrödinger-Hardy systems in the Heisenberg group. Discrete and Continuous Dynamical Systems - S, 2019, 12 (2) : 375-400. doi: 10.3934/dcdss.2019025 |
[13] |
Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic and Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143 |
[14] |
Noboru Okazawa, Toshiyuki Suzuki, Tomomi Yokota. Energy methods for abstract nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2012, 1 (2) : 337-354. doi: 10.3934/eect.2012.1.337 |
[15] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 |
[16] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[17] |
Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030 |
[18] |
Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055 |
[19] |
Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030 |
[20] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]