The Madelung transform relates the non-linear Schrödinger equation and a compressible Euler equation known as the quantum hydrodynamical system. We prove that the Madelung transform is a momentum map associated with an action of the semidirect product group $\mathrm{Diff}(\mathbb{R}^{n}) \ltimes H^∞(\mathbb{R}^n; \mathbb{R})$, which is the configuration space of compressible fluids, on the space $Ψ = H^∞(\mathbb{R}^{n}; \mathbb{C})$ of wave functions. In particular, this implies that the Madelung transform is a Poisson map taking the natural Poisson bracket on $Ψ$ to the compressible fluid Poisson bracket. Moreover, the Madelung transform provides an example of "Clebsch variables" for the hydrodynamical system.
Citation: |
R. Carles
, R. Danchin
and J.-C. Saut
, Madelung, Gross-Pitaevskii and Korteweg, Nonlinearity, 25 (2012)
, 2843-2873.
doi: 10.1088/0951-7715/25/10/2843.![]() ![]() ![]() |
|
B. Khesin, G. Misiolek and K. Modin, Geometry of Newton's equation on diffeomorphisms and densities, work in progress.
![]() |
|
B. Kolev
, Poisson brackets in hydrodynamics, Discrete and Continuous Dynamical Systems, 19 (2007)
, 555-574.
doi: 10.3934/dcds.2007.19.555.![]() ![]() ![]() |
|
E. Madelung
, Quantentheorie in hydrodynamischer Form, Zeitschrift für Physik, 40 (1927)
, 322-326.
doi: 10.1007/BF01400372.![]() ![]() |
|
J. E. Marsden
, T. Ratiu
and A. Weinstein
, Semidirect products and reduction in mechanics, Transactions of the American Mathematical Society, 281 (1984)
, 147-177.
doi: 10.2307/1999527.![]() ![]() ![]() |
|
J. E. Marsden and T. Ratiu,
Introduction to Mechanics and Symmetry, 2nd edition, Springer-Verlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5.![]() ![]() ![]() |
|
J. E. Marsden
and A. Weinstein
, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D: Nonlinear Phenomena, 7 (1983)
, 305-323.
doi: 10.1016/0167-2789(83)90134-3.![]() ![]() ![]() |
|
M.-K. von Renesse
, An optimal transport view of Schrödinger's equation, Canadian Mathematical Bulletin, 55 (2012)
, 858-869.
doi: 10.4153/CMB-2011-121-9.![]() ![]() ![]() |
|
A. Weinstein
, The local structure of Poisson manifolds, Journal of Differential Geometry, 18 (1983)
, 523-557.
doi: 10.4310/jdg/1214437787.![]() ![]() ![]() |