-
Previous Article
The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions
- JGM Home
- This Issue
-
Next Article
Local well-posedness of the EPDiff equation: A survey
Möbius invariants in image recognition
1. | Department of Mathematics, ONAFT, Odessa, Ukraine |
2. | Department of Mathematics, University of Tromsø, Norway |
3. | Institute of Control Sciences of RAS, Moscow, Russia |
In this paper rational differential invariants are used to classify various plane shapes as well as plane domains equipped with an additional geometrical object.
References:
[1] |
P. Bibikov and V. Lychagin,
Projective classification of binary and ternary forms, Journal of Geometry and Physics, 61 (2011), 1914-1927.
doi: 10.1016/j.geomphys.2011.05.001. |
[2] |
M. Gordina and P. Lescot,
Riemannian geometry of $\mathbf{Diff}(S^{1})$, Journal of Functional Analysis, 239 (2006), 611-630.
doi: 10.1016/j.jfa.2006.02.005. |
[3] |
E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil Ⅰ: Gewöhnliche Differentialgleichungen,
Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, , Bd. Leipzig: Akademische Verlagsgesellschaft, Geest and Portig K. -G., 18 (1959), xxvi+666 pp. |
[4] |
A. A. Kirillov,
Geometric approach to discrete series of unireps for Vir, J. Math. Pures Appl., 77 (1998), 735-746.
doi: 10.1016/S0021-7824(98)80007-X. |
[5] |
N. Konovenko and V. Lychagin,
Invariants of projective actions and their application to recognition of fingerprints, Anal. Math. Phys., 6 (2016), 95-107.
doi: 10.1007/s13324-015-0113-5. |
[6] |
N. Konovenko and V. Lychagin,
Lobachevskian geometry in image recognition, Lobachevskii Journal of Mathematics, 36 (2015), 286-291.
doi: 10.1134/S1995080215030075. |
[7] |
N. Konovenko, Differential invariants and $\mathfrak{sl}_{2}$-geometries,
Naukova Dumka, Kiev, (2013), 188pp. (in Russian). |
[8] |
I. S. Krasilshchik, V. V. Lychagin and A. M. Vinogradov,
Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986. |
[9] |
B. Kruglikov and V. Lychagin, Geometry of differential equations, Handbook of global analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 725-771.
doi: 10.1016/B978-044452833-9.50015-2. |
[10] |
B. Kruglikov and V. Lychagin,
Global Lie-Tresse theorem, Selecta Math., 22 (2016), 1357-1411.
doi: 10.1007/s00029-015-0220-z. |
[11] |
P. Malliavin,
The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, 329 (1999), 325-329.
doi: 10.1016/S0764-4442(00)88575-4. |
[12] |
P. W. Michor and D. Mumford,
An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.
doi: 10.1016/j.acha.2006.07.004. |
[13] |
M. Rosenlicht,
A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489.
|
[14] |
G. Segal,
The Geometry of the KdV equation, Inter. J. of Modern Physics A, 6 (1991), 2859-2869.
doi: 10.1142/S0217751X91001416. |
[15] |
E. Sharon and D. Mumford,
2D-Shape Analysis Using Conformal Mapping, International Journal of Computer Vision, 70 (2006), 55-75.
doi: 10.1109/CVPR.2004.1315185. |
[16] |
E. Witten,
Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114 (1988), 1-53.
doi: 10.1007/BF01218287. |
show all references
References:
[1] |
P. Bibikov and V. Lychagin,
Projective classification of binary and ternary forms, Journal of Geometry and Physics, 61 (2011), 1914-1927.
doi: 10.1016/j.geomphys.2011.05.001. |
[2] |
M. Gordina and P. Lescot,
Riemannian geometry of $\mathbf{Diff}(S^{1})$, Journal of Functional Analysis, 239 (2006), 611-630.
doi: 10.1016/j.jfa.2006.02.005. |
[3] |
E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil Ⅰ: Gewöhnliche Differentialgleichungen,
Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, , Bd. Leipzig: Akademische Verlagsgesellschaft, Geest and Portig K. -G., 18 (1959), xxvi+666 pp. |
[4] |
A. A. Kirillov,
Geometric approach to discrete series of unireps for Vir, J. Math. Pures Appl., 77 (1998), 735-746.
doi: 10.1016/S0021-7824(98)80007-X. |
[5] |
N. Konovenko and V. Lychagin,
Invariants of projective actions and their application to recognition of fingerprints, Anal. Math. Phys., 6 (2016), 95-107.
doi: 10.1007/s13324-015-0113-5. |
[6] |
N. Konovenko and V. Lychagin,
Lobachevskian geometry in image recognition, Lobachevskii Journal of Mathematics, 36 (2015), 286-291.
doi: 10.1134/S1995080215030075. |
[7] |
N. Konovenko, Differential invariants and $\mathfrak{sl}_{2}$-geometries,
Naukova Dumka, Kiev, (2013), 188pp. (in Russian). |
[8] |
I. S. Krasilshchik, V. V. Lychagin and A. M. Vinogradov,
Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986. |
[9] |
B. Kruglikov and V. Lychagin, Geometry of differential equations, Handbook of global analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 725-771.
doi: 10.1016/B978-044452833-9.50015-2. |
[10] |
B. Kruglikov and V. Lychagin,
Global Lie-Tresse theorem, Selecta Math., 22 (2016), 1357-1411.
doi: 10.1007/s00029-015-0220-z. |
[11] |
P. Malliavin,
The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, 329 (1999), 325-329.
doi: 10.1016/S0764-4442(00)88575-4. |
[12] |
P. W. Michor and D. Mumford,
An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.
doi: 10.1016/j.acha.2006.07.004. |
[13] |
M. Rosenlicht,
A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489.
|
[14] |
G. Segal,
The Geometry of the KdV equation, Inter. J. of Modern Physics A, 6 (1991), 2859-2869.
doi: 10.1142/S0217751X91001416. |
[15] |
E. Sharon and D. Mumford,
2D-Shape Analysis Using Conformal Mapping, International Journal of Computer Vision, 70 (2006), 55-75.
doi: 10.1109/CVPR.2004.1315185. |
[16] |
E. Witten,
Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114 (1988), 1-53.
doi: 10.1007/BF01218287. |
[1] |
Petr Kůrka. Minimality in iterative systems of Möbius transformations. Conference Publications, 2011, 2011 (Special) : 903-912. doi: 10.3934/proc.2011.2011.903 |
[2] |
Petr Kůrka. Iterative systems of real Möbius transformations. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 567-574. doi: 10.3934/dcds.2009.25.567 |
[3] |
Jon Chaika, Alex Eskin. Möbius disjointness for interval exchange transformations on three intervals. Journal of Modern Dynamics, 2019, 14: 55-86. doi: 10.3934/jmd.2019003 |
[4] |
Jochen Abhau, Oswin Aichholzer, Sebastian Colutto, Bernhard Kornberger, Otmar Scherzer. Shape spaces via medial axis transforms for segmentation of complex geometry in 3D voxel data. Inverse Problems and Imaging, 2013, 7 (1) : 1-25. doi: 10.3934/ipi.2013.7.1 |
[5] |
Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246 |
[6] |
Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993 |
[7] |
Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463 |
[8] |
Daniel Guan. Classification of compact complex homogeneous spaces with invariant volumes. Electronic Research Announcements, 1997, 3: 90-92. |
[9] |
Daniel Guan. Classification of compact homogeneous spaces with invariant symplectic structures. Electronic Research Announcements, 1997, 3: 52-54. |
[10] |
Rinaldo M. Colombo, Graziano Guerra. Differential equations in metric spaces with applications. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 733-753. doi: 10.3934/dcds.2009.23.733 |
[11] |
Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568 |
[12] |
Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629 |
[13] |
Masataka Shibata. Asymptotic shape of a solution for the Plasma problem in higher dimensional spaces. Communications on Pure and Applied Analysis, 2003, 2 (2) : 259-275. doi: 10.3934/cpaa.2003.2.259 |
[14] |
Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006 |
[15] |
Xing Wang, Chang-Qi Tao, Guo-Ji Tang. Differential optimization in finite-dimensional spaces. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1495-1505. doi: 10.3934/jimo.2016.12.1495 |
[16] |
Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005 |
[17] |
Thomas Lorenz. Mutational inclusions: Differential inclusions in metric spaces. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 629-654. doi: 10.3934/dcdsb.2010.14.629 |
[18] |
Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 |
[19] |
Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155 |
[20] |
Rich Stankewitz, Hiroki Sumi. Backward iteration algorithms for Julia sets of Möbius semigroups. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6475-6485. doi: 10.3934/dcds.2016079 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]