June  2017, 9(2): 191-206. doi: 10.3934/jgm.2017008

Möbius invariants in image recognition

1. 

Department of Mathematics, ONAFT, Odessa, Ukraine

2. 

Department of Mathematics, University of Tromsø, Norway

3. 

Institute of Control Sciences of RAS, Moscow, Russia

Received  February 2016 Revised  August 2016 Published  May 2017

In this paper rational differential invariants are used to classify various plane shapes as well as plane domains equipped with an additional geometrical object.

Citation: Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008
References:
[1]

P. Bibikov and V. Lychagin, Projective classification of binary and ternary forms, Journal of Geometry and Physics, 61 (2011), 1914-1927.  doi: 10.1016/j.geomphys.2011.05.001.  Google Scholar

[2]

M. Gordina and P. Lescot, Riemannian geometry of $\mathbf{Diff}(S^{1})$, Journal of Functional Analysis, 239 (2006), 611-630.  doi: 10.1016/j.jfa.2006.02.005.  Google Scholar

[3]

E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil Ⅰ: Gewöhnliche Differentialgleichungen, Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, , Bd. Leipzig: Akademische Verlagsgesellschaft, Geest and Portig K. -G., 18 (1959), xxvi+666 pp.  Google Scholar

[4]

A. A. Kirillov, Geometric approach to discrete series of unireps for Vir, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.  Google Scholar

[5]

N. Konovenko and V. Lychagin, Invariants of projective actions and their application to recognition of fingerprints, Anal. Math. Phys., 6 (2016), 95-107.  doi: 10.1007/s13324-015-0113-5.  Google Scholar

[6]

N. Konovenko and V. Lychagin, Lobachevskian geometry in image recognition, Lobachevskii Journal of Mathematics, 36 (2015), 286-291.  doi: 10.1134/S1995080215030075.  Google Scholar

[7]

N. Konovenko, Differential invariants and $\mathfrak{sl}_{2}$-geometries, Naukova Dumka, Kiev, (2013), 188pp. (in Russian). Google Scholar

[8]

I. S. Krasilshchik, V. V. Lychagin and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986.  Google Scholar

[9]

B. Kruglikov and V. Lychagin, Geometry of differential equations, Handbook of global analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 725-771. doi: 10.1016/B978-044452833-9.50015-2.  Google Scholar

[10]

B. Kruglikov and V. Lychagin, Global Lie-Tresse theorem, Selecta Math., 22 (2016), 1357-1411.  doi: 10.1007/s00029-015-0220-z.  Google Scholar

[11]

P. Malliavin, The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, 329 (1999), 325-329.  doi: 10.1016/S0764-4442(00)88575-4.  Google Scholar

[12]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[13]

M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489.   Google Scholar

[14]

G. Segal, The Geometry of the KdV equation, Inter. J. of Modern Physics A, 6 (1991), 2859-2869.  doi: 10.1142/S0217751X91001416.  Google Scholar

[15]

E. Sharon and D. Mumford, 2D-Shape Analysis Using Conformal Mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.  Google Scholar

[16]

E. Witten, Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114 (1988), 1-53.  doi: 10.1007/BF01218287.  Google Scholar

show all references

References:
[1]

P. Bibikov and V. Lychagin, Projective classification of binary and ternary forms, Journal of Geometry and Physics, 61 (2011), 1914-1927.  doi: 10.1016/j.geomphys.2011.05.001.  Google Scholar

[2]

M. Gordina and P. Lescot, Riemannian geometry of $\mathbf{Diff}(S^{1})$, Journal of Functional Analysis, 239 (2006), 611-630.  doi: 10.1016/j.jfa.2006.02.005.  Google Scholar

[3]

E. Kamke, Differentialgleichungen. Lösungsmethoden und Lösungen. Teil Ⅰ: Gewöhnliche Differentialgleichungen, Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, , Bd. Leipzig: Akademische Verlagsgesellschaft, Geest and Portig K. -G., 18 (1959), xxvi+666 pp.  Google Scholar

[4]

A. A. Kirillov, Geometric approach to discrete series of unireps for Vir, J. Math. Pures Appl., 77 (1998), 735-746.  doi: 10.1016/S0021-7824(98)80007-X.  Google Scholar

[5]

N. Konovenko and V. Lychagin, Invariants of projective actions and their application to recognition of fingerprints, Anal. Math. Phys., 6 (2016), 95-107.  doi: 10.1007/s13324-015-0113-5.  Google Scholar

[6]

N. Konovenko and V. Lychagin, Lobachevskian geometry in image recognition, Lobachevskii Journal of Mathematics, 36 (2015), 286-291.  doi: 10.1134/S1995080215030075.  Google Scholar

[7]

N. Konovenko, Differential invariants and $\mathfrak{sl}_{2}$-geometries, Naukova Dumka, Kiev, (2013), 188pp. (in Russian). Google Scholar

[8]

I. S. Krasilshchik, V. V. Lychagin and A. M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 1. Gordon and Breach Science Publishers, New York, 1986.  Google Scholar

[9]

B. Kruglikov and V. Lychagin, Geometry of differential equations, Handbook of global analysis, Elsevier Sci. B. V., Amsterdam, 1214 (2008), 725-771. doi: 10.1016/B978-044452833-9.50015-2.  Google Scholar

[10]

B. Kruglikov and V. Lychagin, Global Lie-Tresse theorem, Selecta Math., 22 (2016), 1357-1411.  doi: 10.1007/s00029-015-0220-z.  Google Scholar

[11]

P. Malliavin, The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris, 329 (1999), 325-329.  doi: 10.1016/S0764-4442(00)88575-4.  Google Scholar

[12]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[13]

M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci., 35 (1963), 487-489.   Google Scholar

[14]

G. Segal, The Geometry of the KdV equation, Inter. J. of Modern Physics A, 6 (1991), 2859-2869.  doi: 10.1142/S0217751X91001416.  Google Scholar

[15]

E. Sharon and D. Mumford, 2D-Shape Analysis Using Conformal Mapping, International Journal of Computer Vision, 70 (2006), 55-75.  doi: 10.1109/CVPR.2004.1315185.  Google Scholar

[16]

E. Witten, Coadjoint Orbits of the Virasoro Group, Commun. Math. Phys., 114 (1988), 1-53.  doi: 10.1007/BF01218287.  Google Scholar

[1]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[2]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[3]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[4]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[5]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[6]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[7]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[8]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[9]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[10]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[11]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[12]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[14]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[15]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[16]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[17]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[18]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[19]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[20]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (58)
  • HTML views (63)
  • Cited by (0)

Other articles
by authors

[Back to Top]