\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Complete spelling rules for the Monster tower over three-space

Abstract Full Text(HTML) Figure(4) / Table(4) Related Papers Cited by
  • The Monster tower, also known as the Semple tower, is a sequence of manifolds with distributions of interest to both differential and algebraic geometers. Each manifold is a projective bundle over the previous. Moreover, each level is a fiber compactified jet bundle equipped with an action of finite jets of the diffeomorphism group. There is a correspondence between points in the tower and curves in the base manifold. These points admit a stratification which can be encoded by a word called the RVT code. Here, we derive the spelling rules for these words in the case of a three dimensional base. That is, we determine precisely which words are realized by points in the tower. To this end, we study the incidence relations between certain subtowers, called Baby Monsters, and present a general method for determining the level at which each Baby Monster is born. Here, we focus on the case where the base manifold is three dimensional, but all the methods presented generalize to bases of arbitrary dimension.

    Mathematics Subject Classification: 58A30, 58A17, 58K50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The three critical planes $V, T_1$, and $T_2$, and their intersections, the distinguished lines $L_1, L_2$, and $L_3$.

    Figure 2.  Critical plane configurations that can appear in the distribution above an $R$ point (top left), a $V$ or $T_1$ point (top right), a $T_2$ point (bottom left), and an $L_j$ point (bottom right).

    Figure 3.  Critical plane configuration over $p_3\in RVL_1$. The left side shows the birth of $T_1(p_3)=\delta_2^1(p_3)$ as the first prolongation of the vertical plane at level 2. The right side shows the birth of $T_2(p_3)=\delta_1^2(p_3)$ as the second prolongation of the vertical plane at level 1. These two Baby Monsters meet in $\Delta^3$, and their intersection is the distinguished line $L_2(p_3)$. See Example 2.

    Figure 4.  Critical plane configuration over $p_4\in RVL_1T_2$. This shows the birth of $T_2(p_4)=\delta_1^3(p_4)$ as the third prolongation of the vertical plane at level 1. See Example 3.

    Table 1.  RVT Code Spelling Rules

    Letter Can be followed by Cannot be followed by
    $R$ $R, V$ $T_i, L_j$
    $V$ $R, V, T_1, L_1$ $T_2, L_2, L_3$
    $T_1$ $R, V, T_1, L_1$ $T_2, L_2, L_3$
    $T_2$ $R, V, T_2, L_3$ $T_1, L_1, L_2$
    $L_1$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$
    $L_2$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$
    $L_3$ $R, V, T_1, T_2, L_1, L_2, L_3$ $\emptyset$
     | Show Table
    DownLoad: CSV

    Table 2.  Critical Hyperplane Configurations

    Last letter in RVT code of $p\in M^k$ Critical planes appearing in $\Delta^k(p)$
    $R$ $V$
    $V$ or $T_1$ $V$ and $T_1$
    $T_2$ $V$ and $T_2$
    $L_1, L_2,$ or $L_3$ $V, T_1$, and $T_2$
     | Show Table
    DownLoad: CSV

    Table 4.  Base Cases of Inductive Proof

    RVT code of $p_k\in M^k$ $T_{1}(p_k)$ $T_{2}(p_k)$
    $ \lambda V T_1^{m} L_1 T_{2} \, \, \text{for} \, \, m \geq 0$ None $\delta ^{m+3}_{k-m-3}(p_{k })$
    $ \lambda L_1 T_1^{m} L_1 T_{2} \, \, \text{for} \, \, m \geq 1$ None $\delta ^{m+3}_{k-m-3}(p_{k })$
    $ \lambda L_1 L_1 T_{2}$ None $\delta ^{3}_{k-3}(p_{k})$
    $ \lambda VT_1^{m} L_1L_{2} \, \, \text{for} \, \, m \geq 0$ $\delta ^{2}_{k-2}(p_{k})$ $\delta ^{m+3}_{k-m-3}(p_{k})$
    $ \lambda L_1T_1^{m} L_1L_{2} \, \, \text{for} \, \, m \geq 1$ $\delta ^{2}_{k-2}(p_{k})$ $\delta ^{m+3}_{k-m-3}(p_{k})$
    $ \lambda L_1L_1L_{2}$ $\delta ^{2}_{k-2} (p_{k})$ $\delta ^{3}_{k-3}(p_{k})$
    $ \lambda VT_1^{m} L_1 L_{3} \, \, \text{for} \, \, m \geq 0$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{m + 3}_{k-m-3}(p_{k})$
    $ \lambda L_1T_1^{m} L_1 L_{3} \, \, \text{for} \, \, m \geq 1$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{m + 3}_{k-m-3}(p_{k})$
    $ \lambda L_1L_1 L_{3}$ $\delta ^{1}_{k-1}(p_{k})$ $\delta ^{3}_{k-3}(p_{k})$
     | Show Table
    DownLoad: CSV

    Table 3.  Summary of Example 2: $RVL_1$

    Level $i$ Coordinates on $M^i$ $\mathbb P\Delta^{i-1} = F_i$ coordinates Critical planes in $\Delta^i$ RVT code of $p_i$
    $0$ $(x, y, z)$ n/anone n/a
    $1$ $(x, y, z, u_1, v_1)$
    $u_1=\frac{dy}{dx}, v_1=\frac{dz}{dx}$
    $[dx : dy : dz]$$V(p_1)=\delta_1^0$ $p_1=(p_0, l_0)\in R$
    $l_0 \subset \Delta^0=T_{p_0}M^0$
    $2$ $(x, y, z, u_1, v_1, u_2, v_2)$
    $u_2=\frac{dx}{du_1}, v_2=\frac{dv_1}{du_1}$
    $[dx : du_1 : dv_1]$$V(p_2)=\delta_2^0,$
    $T_1(p_2)=\delta_1^1$
    $p_2=(p_1, l_1)\in RV$
    $l_1 \subset V(p_1) \subset \Delta^1$
    $3$ $(x, y, z, u_1, v_1, u_2, v_3, u_3, v_3)$
    $u_3=\frac{du_1}{dv_2}, v_3=\frac{du_2}{dv_2}$
    $[du_1 : du_2 : dv_2]$$V(p_3)=\delta_3^0,$
    $T_1(p_3)=\delta_2^1,$
    $T_2(p_3)=\delta_1^2$
    $p_3=(p_2, l_2)\in RVL_1$
    $l_2 = L_1(p_2) \subset \Delta^2$
     | Show Table
    DownLoad: CSV
  •   V. I. Arnol'd , Simple singularities of curves, Proc. Steklov Inst. Math., 226 (1999) , 20-28. 
      E. Cartan , Sur l'équivalence absolue de certains systèmes d'équations différentielles et sur certaines familles de courbes, Bull. Soc. Math. France, 42 (1914) , 12-48. 
      A. Castro, Chains and Monsters: From Cauchy-Riemann Geometry to Semple Towers and Singular Space Curves, PhD thesis, 2010.
      A. Castro, S. Colley, G. Kennedy and C. Shanbrom, A coarse stratification of the Monster tower, arXiv: 1606.07931. [math. AG].
      A. Castro  and  W. Howard , A Monster tower approach to Goursat multi-flags, Differential Geom. Appl., 30 (2012) , 405-427.  doi: 10.1016/j.difgeo.2012.06.005.
      A. Castro , W. Howard  and  C. Shanbrom , Bridges between subRiemannian geometry and algebraic geometry, Proceedings of 10th AIMS Conference on Dynamical Systems, Differential Equations, and Applications, 30 (2015) , 239-247.  doi: 10.3934/proc.2015.0239.
      A. Castro , R. Montgomery  and  W. Howard , Spatial curve singularities and the Monster/Semple tower, Israel J. Math., 192 (2012) , 381-427.  doi: 10.1007/s11856-012-0031-2.
      A. Giaro , A. Kumpera  and  C. Ruiz , Sur la lecture correcte d'un résultat d'Élie Cartan, C. R. Acad. Sci. Paris, 287 (1978) , 241-244. 
      F. Jean , The car with N trailers: Characterisation of the singular configurations, ESAIM: Control, Optimisation, and Calculus of Variations, 1 (1996) , 241-266. 
      A. Kumpera  and  J. L. Rubin , Multi-flag systems and ordinary differential equations, Nagoya Math. J., 166 (2002) , 1-27.  doi: 10.1017/S0027763000008229.
      A. KushnerV. Lychagin and  V. RuvtsovContact Geometry and Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK, 2007. 
      S. J. Li  and  W. Respondek , The geometry, controllability, and flatness property of the $n$-bar system, Internat. J. Control, 84 (2011) , 834-850.  doi: 10.1080/00207179.2011.569955.
      F. Luca  and  J. J. Risler , The maximum of the degree of nonholonomy for the car with N trailers, Proceedings of the 4th IFAC Symposium on Robot Control, Capri, (1994) , 165-170. 
      R. Montgomery  and  M. Zhitomirskii , Geometric approach to goursat flags, Ann. Inst. H. Poincaré -AN, 18 (2001) , 459-493.  doi: 10.1016/S0294-1449(01)00076-2.
      R. Montgomery  and  M. Zhitomirskii , Points and curves in the monster tower, Memoirs of the AMS, 203 (2010) , x+137 pp.  doi: 10.1090/S0065-9266-09-00598-5.
      P. Mormul , Geometric classes of Goursat flags and their encoding by small growth vectors, Central European J. Math., 2 (2004) , 859-883.  doi: 10.2478/BF02475982.
      P. Mormul, Multi-dimensional Cartan prolongation and special k-flags, Geometric Singularity Theory, Banach Center Publications, 65 (2004), 157-178. doi: 10.4064/bc65-0-12.
      P. Mormul , Small growth vectors of the compactifications of the contact systems on $J^r(1,1)$, Contemporary Mathematics, 569 (2012) , 123-141.  doi: 10.1090/conm/569/11247.
      P. Mormul and F. Pelletier, Special 2-flags in lengths not exceeding four: A study in strong nilpotency of distributions, arXiv: 1011.1763. [math. DG].
      F. Pelletier  and  M. Slayman , Articulated arm and special multi-flags, J. Math. Sci. Adv. Appl., 8 (2011) , 9-41. 
      F. Pelletier  and  M. Slayman , Configurations of an articulated arm and singularities of special multi-flags, SIGMA, 10 (2014) , Paper 059, 38 pp.  doi: 10.3842/SIGMA.2014.059.
      W. Respondek, Symmetries and minimal flat outputs of nonlinear control systems, New Trends in Nonlinear Dynamics and Control and their Applications, Lecture Notes in Control and Information Science, 295 (2004), 65-86. doi: 10.1007/978-3-540-45056-6_5.
      J. Semple , Singularities of Space Algebraic Curves, Proceedings of the London Mathematical Society, 44 (1938) , 149-174. 
      C. Shanbrom , The Puiseux characteristic of a Goursat germ, J. Dynamical and Control Systems, 20 (2014) , 33-46.  doi: 10.1007/s10883-013-9207-2.
  • 加载中

Figures(4)

Tables(4)

SHARE

Article Metrics

HTML views(380) PDF downloads(126) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return