We consider the question of linear stability of a periodic solution $z(t)$ with finite spatio-temporal symmetry group of a reversible-equivariant Hamiltonian system obtained as a minimizer of the action functional. Our main theorem states that $z(t)$ is unstable if a subspace $W$ associated with the boundary conditions of the minimizing problem is a Lagrangian subspace with no focal points on the time interval defined by the boundary conditions and the second variation restricted to the subspace $W$ at the minimizer has positive directions. We show that the conditions of our theorem are always met for a class of minimizing periodic orbits with the standard mechanical reversing symmetry. Comparison theorems for Lagrangian subspaces and the use of time-reversing symmetries are essential tools in constructing stable and unstable subspaces for $z(t)$. In particular, our results are complementary to the recent paper of Hu and Sun Commun. Math. Phys. 290, (2009).
Citation: |
V. I. Arnol'd
, The Sturm theorems and symplectic geometry, Funktsional. Anal. i Prilozhen., 19 (1985)
, 1-10, 95.
![]() ![]() |
|
S. V. Bolotin
and D. V. Treschev
, Hill's formula, Russian Math. Surveys, 65 (2010)
, 191-257.
doi: 10.1070/RM2010v065n02ABEH004671.![]() ![]() ![]() |
|
R. Bott
, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math., 9 (1956)
, 171-206.
doi: 10.1002/cpa.3160090204.![]() ![]() ![]() |
|
S. Cappell
, R. Lee
and E. Y. Miller
, On the Maslov index, Comm. Pure Appl. Math., 47 (1994)
, 121-186.
doi: 10.1002/cpa.3160470202.![]() ![]() ![]() |
|
K.-C. Chen
, Action minimizing orbits in the parallelogram four-body problem with equal masses, Arch. Ration. Mech. Anal., 158 (2001)
, 293-318.
doi: 10.1007/s002050100146.![]() ![]() ![]() |
|
K.-C. Chen
, Binary decompositions for the planar N-body problems and symmetric periodic solutions, Arch. Ration. Mech. Anal., 170 (2003)
, 247-276.
doi: 10.1007/s00205-003-0277-2.![]() ![]() ![]() |
|
A. Chenciner
and R. Montgomery
, A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. of Math., 152 (2000)
, 881-901.
doi: 10.2307/2661357.![]() ![]() ![]() |
|
A. Chenciner
and A. Venturelli
, Minima de l'intégrale d'action du Probléme newtonien de 4 corps de masses égales dans $\mathbb{R}^{3}$ : orbites hip-hop, Celestial Mechanics and Dynamical Astronomy, 77 (2000)
, 139-152.
doi: 10.1023/A:1008381001328.![]() ![]() ![]() |
|
G. Contreras
and R. Iturriaga
, Convex Hamiltonians without conjugate points, Ergodic Theory Dynam. Systems, 19 (1999)
, 901-952.
doi: 10.1017/S014338579913387X.![]() ![]() ![]() |
|
J. J. Duistermaat
, On the Morse index in variational calculus, Adv. Math., 21 (1976)
, 173-195.
doi: 10.1016/0001-8708(76)90074-8.![]() ![]() ![]() |
|
D. Ferrario
and S. Terracini
, On the existence of collisionless equivariant minimizers for the classical n-body problem, Inv. Math., 155 (2004)
, 305-362.
doi: 10.1007/s00222-003-0322-7.![]() ![]() ![]() |
|
M. Golubitsky, I. Stewart and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. Ⅱ, Applied Mathematical Sciences, 69, Springer-Verlag, New-York, 1988.
doi: 10.1007/978-1-4612-4574-2.![]() ![]() ![]() |
|
P. Hartman, Ordinary Differential Equations, Birkhäuser, Boston, 1982.
![]() ![]() |
|
X. Hu
and S. Sun
, Index and stability of symmetric periodic orbits in Hamiltonian systems with application to figure-eight orbit, Commun. Math. Phys., 290 (2009)
, 737-777.
doi: 10.1007/s00220-009-0860-y.![]() ![]() ![]() |
|
M. Lewis
, D. Offin
, P.-L. Buono
and M. Kovacic
, Instability of the periodic Hip-Hop orbit in the 2N-body problem with equal masses, Discrete and Continuous Dynamical Systems -A, 33 (2013)
, 1137-1155.
![]() ![]() |
|
J. E. Marsden, Lectures on Mechanics, LMS Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992.
doi: 10.1017/CBO9780511624001.![]() ![]() ![]() |
|
M. Morse, The Calculus of Variations in the Large, American Mathematical Society Colloquium Publications, 18 American Mathematical Society, Providence, 1996.
![]() ![]() |
|
D. Offin
, A spectral theorem for reversible second order equations with periodic coefficients, Differential and Integral Equations, 5 (1992)
, 615-629.
![]() ![]() |
|
D. Offin
, Hyperbolic minimizing geodesics, Trans. AMS, 352 (2000)
, 3323-3338.
doi: 10.1090/S0002-9947-00-02483-1.![]() ![]() ![]() |
|
D. Offin
and H. Cabral
, Hyperbolic symmetric periodic orbits in the isosceles three-body problem, Disc. Cont. Dyn. Syst. Ser. S, 2 (2009)
, 379-392.
doi: 10.3934/dcdss.2009.2.379.![]() ![]() ![]() |
|
G. E. Roberts
, Linear stability analysis of the figure-eight orbit in the three-body problem, Ergodic Theory Dynam. Systems, 27 (2007)
, 1947-1963.
doi: 10.1017/S0143385707000284.![]() ![]() ![]() |