Advanced Search
Article Contents
Article Contents

On the relationship between the energy shaping and the Lyapunov constraint based methods

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we make a review of the controlled Hamiltonians (CH) method and its related matching conditions, focusing on an improved version recently developed by D.E. Chang. Also, we review the general ideas around the Lyapunov constraint based (LCB) method, whose related partial differential equations (PDEs) were originally studied for underactuated systems with only one actuator, and then we study its PDEs for an arbitrary number of actuators. We analyze and compare these methods within the framework of Differential Geometry, and from a purely theoretical point of view. We show, in the context of control systems defined by simple Hamiltonian functions, that the LCB method and the Chang's version of the CH method are equivalent stabilization methods (i.e. they give rise to the same set of control laws). In other words, we show that the Chang's improvement of the energy shaping method is precisely the LCB method. As a by-product, coordinate-free and connection-free expressions of Chang's matching conditions are obtained.

    Mathematics Subject Classification: Primary: 93D05, 93D20; Secondary: 93C10.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   R. Abraham and J. E. Marsden, Foundations of Mechanics, Advanced Book Program, Reading, Mass., 1978.
      S. Arimoto and F. Miyazaki, Stability and robustness of pid feedback control for robot manipulators of sensory capability, Robotics Research: 1st Internat. Symp., M. Brady, R. P. Paul (Eds. ), Cambridge: MIT Press, (1983), 783-799.
      V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978.
      D. R. Auckly , L. V. Kapitanski  and  W. White , Control of nonlinear underactuated systems, Comm. Pure Appl. Math., 53 (2000) , 354-369.  doi: 10.1002/(SICI)1097-0312(200003)53:3<354::AID-CPA3>3.0.CO;2-U.
      A. Bacciotti  and  L. Rosier , Regularity of Liapunov functions for stable systems, Systems & Control Letters, 41 (2000) , 265-270.  doi: 10.1016/S0167-6911(00)00062-1.
      A. M. Bloch , P. S. Krishnaprasad , J. E. Marsden  and  G. Sánchez de Alvarez , Stabilization of rigid body dynamics by internal and external torques, Automatica, 28 (1992) , 745-756.  doi: 10.1016/0005-1098(92)90034-D.
      A. M. Bloch , N. E. Leonard  and  J. E. Marsden , Stabilization of mechanical systems using controlled lagrangians, Proc. of the 36th IEEE Conf. on Decision and Control, (1997) , 2356-2361.  doi: 10.1109/MCS.2010.939943.
      A. M. Bloch , N. E. Leonard  and  J. E. Marsden , Controlled Lagrangian and the stabilization of mechanical systems Ⅰ: The first matching theorem, IEEE Trans. Automat.Control, 45 (2000) , 2253-2270.  doi: 10.1109/9.895562.
      A. M. Bloch , D. E. Chang , N. E. Leonard  and  J. E. Marsden , Controlled Lagrangian and the stabilization of mechanical systems Ⅱ: Potential shaping, IEEE Trans. Automat. Control., 46 (2001) , 1556-1571.  doi: 10.1109/9.956051.
      A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.
      W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, New York-London, 1975.
      R. W. Brockett, Control theory and analytical mechanics, in 1976 Ames Research Center (NASA) Conference on Geometric Control Theory, (R. Hermann and C. Martin, eds. ), Math Sci Press, Brookline, Massachusetts, Lie Groups: History, Frontiers, and Applications, 7 (1977), 1-48.
      F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.
      H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets J. Math. Phys. , 47 (2006), 022902, 29 pp. doi: 10.1063/1.2165797.
      M. Chaalal and N. Achour, Stabilization of a class of mechanical systems with impulse effects by lyapunov constraints, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 2015,335-340. doi: 10.1109/MMAR.2015.7283898.
      D. E. Chang , The method of controlled Lagrangians: Energy plus force shaping, SIAM J. Control and Optimization, 48 (2010) , 4821-4845.  doi: 10.1137/070691310.
      D. E. Chang , Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation, IEEE Trans. Automat. Contr., 55 (2010) , 1888-1893.  doi: 10.1109/TAC.2010.2049279.
      D. E. Chang , Generalization of the IDA-PBC method for stabilization of mechanical systems, Proc. of the 18th Mediterranean Conf. on Control & Automation, (2010) , 226-230.  doi: 10.1109/MED.2010.5547672.
      D. E. Chang , On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regular and Chaotic Dynamics, 19 (2014) , 556-575.  doi: 10.1134/S1560354714050049.
      D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations (Special Issue Dedicated to JL Lions), 8 (2002), 393-422. doi: 10.1051/cocv:2002045.
      N. Crasta, R. Ortega, H. Pillai and J. Velazquez, The Matching Equations of Energy Shaping Controllers for Mechanical Systems are not Simplified with Generalized Forces, Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, University of Bologna, Bertinoro, Italy, 2012.
      S. Grillo, Sistemas Noholónomos Generalizados, Ph. D. thesis, Instituto Balseiro, 2007.
      S. Grillo, Higher order constrained Hamiltonian systems Journal of Mathematical Physics, 50 (2009), 082901, 34 pp. doi: 10.1063/1.3194782.
      S. Grillo , F. Maciel  and  D. Pérez , Closed-loop and constrained mechanical systems, Int. Journal of Geom. Meth. in Mod. Physics, 7 (2010) , 857-886.  doi: 10.1142/S0219887810004580.
      S. Grillo , J. Marsden  and  S. Nair , Lyapunov constraints and global asymptotic stabilization, Journal of Geom. Mech., 3 (2011) , 145-196.  doi: 10.3934/jgm.2011.3.145.
      S. Grillo, L. Salomone and M. Zuccalli, On the asymptotic stabilizability of underactuated systems with two degrees of freedom and the Lyapunov constraint based method, preprint, arXiv: 1604.08475.
      J. Hamberg, Gerneral Matching Conditions in the Theory of Controlled Lagrangians, in Proc. CDC, Phoenix, AZ, 1999.
      C. Kellett , Classical converse theorems in Lyapunov's second method, Dyn. Syst. Ser. B, 20 (2015) , 2333-2360, arXiv:1502.  doi: 10.3934/dcdsb.2015.20.2333.
      H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 2002.
      S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Son, New York, 1996.
      P. Krishnaprasad , Lie-Poisson structures, dual-spin spacecraft and asymptotic stability, Nonl. Anal. Th. Meth. and Appl., 9 (1985) , 1011-1035.  doi: 10.1016/0362-546X(85)90083-5.
      C.-M. Marle , Kinematic and geometric constraints, servomechanism and control of mechanical systems, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996) , 353-364. 
      C.-M. Marle , Various approaches to conservative and nonconservative non-holonomic systems, Rep. Math. Phys., 42 (1998) , 211-229.  doi: 10.1016/S0034-4877(98)80011-6.
      J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.
      J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, New York, 2001.
      J. L. Massera , Contributions to stability theory, Annals of Math., 64 (1956) , 182-206.  doi: 10.2307/1969955.
      Erratum in Annals of Math., 68 (1958), 202.
      R. Ortega , M. W. Spong , F. Gómez-Estern  and  G. Blankenstein , Stabilization of underactuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, 47 (2002) , 1218-1233.  doi: 10.1109/TAC.2002.800770.
      D. Pérez, Sistemas Noholónomos Generalizados y su Aplicación a la Teoría de Control Automático Mediante Vínculos Cinemáticos, Proyecto Integrador, Instituto Balseiro, 2006.
      D. Pérez, Sistemas con Vínculos de Orden Superior y su Aplicación a la Teoría de Control Automático, Master thesis, Instituto Balseiro, 2007.
      J. G. Romero , A. Donaire  and  R. Ortega , Robust energy shaping control of mechanical systems, Syst. Control Lett., 62 (2013) , 770-780.  doi: 10.1016/j.sysconle.2013.05.011.
      A. J. van der Schaft , Hamiltonian dynamics with external forces and observations, Mathematical Systems Theory, 15 (1982) , 145-168.  doi: 10.1007/BF01786977.
      A. J. van der Schaft , Stabilization of Hamiltonian systems, Nonlinear Analysis, Theory, Methods & Applications, 10 (1986) , 1021-1035.  doi: 10.1016/0362-546X(86)90086-6.
      A. S. Shiriaev , J. W. Perram  and  C. C. Canudas , Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach, IEEE Trans. Automat. Contr., 50 (2005) , 1164-1176.  doi: 10.1109/TAC.2005.852568.
      J. C. Willems , System theoretic models for the analysis of physical systems, Ricerche di Automatica, 10 (1979) , 71-106. 
      C. Woolsey , C. Reddy , A. Bloch , D. Chang , N. Leonard  and  J. Marsden , Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10 (2004) , 478-496.  doi: 10.3166/ejc.10.478-496.
  • 加载中

Article Metrics

HTML views(1477) PDF downloads(165) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint