December  2017, 9(4): 459-486. doi: 10.3934/jgm.2017018

On the relationship between the energy shaping and the Lyapunov constraint based methods

1. 

Centro Atómico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche, and CONICET, Argentina

2. 

Departamento de Matemática, Facultad de Ciencias Exactas, UNLP, 1900 La Plata, and CONICET, Argentina

3. 

Departamento de Matemática, Facultad de Ciencias Exactas, UNLP, 1900 La Plata, Argentina

S. Grillo and L. Salomone thank CONICET for its financial support. The authors also thank the referees and the editor for their useful remarks.

Received  December 2016 Revised  April 2017 Published  October 2017

In this paper, we make a review of the controlled Hamiltonians (CH) method and its related matching conditions, focusing on an improved version recently developed by D.E. Chang. Also, we review the general ideas around the Lyapunov constraint based (LCB) method, whose related partial differential equations (PDEs) were originally studied for underactuated systems with only one actuator, and then we study its PDEs for an arbitrary number of actuators. We analyze and compare these methods within the framework of Differential Geometry, and from a purely theoretical point of view. We show, in the context of control systems defined by simple Hamiltonian functions, that the LCB method and the Chang's version of the CH method are equivalent stabilization methods (i.e. they give rise to the same set of control laws). In other words, we show that the Chang's improvement of the energy shaping method is precisely the LCB method. As a by-product, coordinate-free and connection-free expressions of Chang's matching conditions are obtained.

Citation: Sergio Grillo, Leandro Salomone, Marcela Zuccalli. On the relationship between the energy shaping and the Lyapunov constraint based methods. Journal of Geometric Mechanics, 2017, 9 (4) : 459-486. doi: 10.3934/jgm.2017018
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

S. Arimoto and F. Miyazaki, Stability and robustness of pid feedback control for robot manipulators of sensory capability, Robotics Research: 1st Internat. Symp., M. Brady, R. P. Paul (Eds. ), Cambridge: MIT Press, (1983), 783-799. Google Scholar

[3]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978.  Google Scholar

[4]

D. R. AucklyL. V. Kapitanski and W. White, Control of nonlinear underactuated systems, Comm. Pure Appl. Math., 53 (2000), 354-369.  doi: 10.1002/(SICI)1097-0312(200003)53:3<354::AID-CPA3>3.0.CO;2-U.  Google Scholar

[5]

A. Bacciotti and L. Rosier, Regularity of Liapunov functions for stable systems, Systems & Control Letters, 41 (2000), 265-270.  doi: 10.1016/S0167-6911(00)00062-1.  Google Scholar

[6]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques, Automatica, 28 (1992), 745-756.  doi: 10.1016/0005-1098(92)90034-D.  Google Scholar

[7]

A. M. BlochN. E. Leonard and J. E. Marsden, Stabilization of mechanical systems using controlled lagrangians, Proc. of the 36th IEEE Conf. on Decision and Control, (1997), 2356-2361.  doi: 10.1109/MCS.2010.939943.  Google Scholar

[8]

A. M. BlochN. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems Ⅰ: The first matching theorem, IEEE Trans. Automat.Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[9]

A. M. BlochD. E. ChangN. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems Ⅱ: Potential shaping, IEEE Trans. Automat. Control., 46 (2001), 1556-1571.  doi: 10.1109/9.956051.  Google Scholar

[10]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.  Google Scholar

[11]

W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, New York-London, 1975.  Google Scholar

[12]

R. W. Brockett, Control theory and analytical mechanics, in 1976 Ames Research Center (NASA) Conference on Geometric Control Theory, (R. Hermann and C. Martin, eds. ), Math Sci Press, Brookline, Massachusetts, Lie Groups: History, Frontiers, and Applications, 7 (1977), 1-48.  Google Scholar

[13]

F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[14]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets J. Math. Phys. , 47 (2006), 022902, 29 pp. doi: 10.1063/1.2165797.  Google Scholar

[15]

M. Chaalal and N. Achour, Stabilization of a class of mechanical systems with impulse effects by lyapunov constraints, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 2015,335-340. doi: 10.1109/MMAR.2015.7283898.  Google Scholar

[16]

D. E. Chang, The method of controlled Lagrangians: Energy plus force shaping, SIAM J. Control and Optimization, 48 (2010), 4821-4845.  doi: 10.1137/070691310.  Google Scholar

[17]

D. E. Chang, Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation, IEEE Trans. Automat. Contr., 55 (2010), 1888-1893.  doi: 10.1109/TAC.2010.2049279.  Google Scholar

[18]

D. E. Chang, Generalization of the IDA-PBC method for stabilization of mechanical systems, Proc. of the 18th Mediterranean Conf. on Control & Automation, (2010), 226-230.  doi: 10.1109/MED.2010.5547672.  Google Scholar

[19]

D. E. Chang, On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regular and Chaotic Dynamics, 19 (2014), 556-575.  doi: 10.1134/S1560354714050049.  Google Scholar

[20]

D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations (Special Issue Dedicated to JL Lions), 8 (2002), 393-422. doi: 10.1051/cocv:2002045.  Google Scholar

[21]

N. Crasta, R. Ortega, H. Pillai and J. Velazquez, The Matching Equations of Energy Shaping Controllers for Mechanical Systems are not Simplified with Generalized Forces, Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, University of Bologna, Bertinoro, Italy, 2012. Google Scholar

[22]

S. Grillo, Sistemas Noholónomos Generalizados, Ph. D. thesis, Instituto Balseiro, 2007. Google Scholar

[23]

S. Grillo, Higher order constrained Hamiltonian systems Journal of Mathematical Physics, 50 (2009), 082901, 34 pp. doi: 10.1063/1.3194782.  Google Scholar

[24]

S. GrilloF. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, Int. Journal of Geom. Meth. in Mod. Physics, 7 (2010), 857-886.  doi: 10.1142/S0219887810004580.  Google Scholar

[25]

S. GrilloJ. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization, Journal of Geom. Mech., 3 (2011), 145-196.  doi: 10.3934/jgm.2011.3.145.  Google Scholar

[26]

S. Grillo, L. Salomone and M. Zuccalli, On the asymptotic stabilizability of underactuated systems with two degrees of freedom and the Lyapunov constraint based method, preprint, arXiv: 1604.08475. Google Scholar

[27]

J. Hamberg, Gerneral Matching Conditions in the Theory of Controlled Lagrangians, in Proc. CDC, Phoenix, AZ, 1999. Google Scholar

[28]

C. Kellett, Classical converse theorems in Lyapunov's second method, Dyn. Syst. Ser. B, 20 (2015), 2333-2360, arXiv:1502.  doi: 10.3934/dcdsb.2015.20.2333.  Google Scholar

[29]

H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 2002. Google Scholar

[30]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Son, New York, 1996.  Google Scholar

[31]

P. Krishnaprasad, Lie-Poisson structures, dual-spin spacecraft and asymptotic stability, Nonl. Anal. Th. Meth. and Appl., 9 (1985), 1011-1035.  doi: 10.1016/0362-546X(85)90083-5.  Google Scholar

[32]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353-364.   Google Scholar

[33]

C.-M. Marle, Various approaches to conservative and nonconservative non-holonomic systems, Rep. Math. Phys., 42 (1998), 211-229.  doi: 10.1016/S0034-4877(98)80011-6.  Google Scholar

[34]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[35]

J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, New York, 2001. Google Scholar

[36]

J. L. Massera, Contributions to stability theory, Annals of Math., 64 (1956), 182-206.  doi: 10.2307/1969955.  Google Scholar

[37]

Erratum in Annals of Math., 68 (1958), 202. Google Scholar

[38]

R. OrtegaM. W. SpongF. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, 47 (2002), 1218-1233.  doi: 10.1109/TAC.2002.800770.  Google Scholar

[39]

D. Pérez, Sistemas Noholónomos Generalizados y su Aplicación a la Teoría de Control Automático Mediante Vínculos Cinemáticos, Proyecto Integrador, Instituto Balseiro, 2006. Google Scholar

[40]

D. Pérez, Sistemas con Vínculos de Orden Superior y su Aplicación a la Teoría de Control Automático, Master thesis, Instituto Balseiro, 2007. Google Scholar

[41]

J. G. RomeroA. Donaire and R. Ortega, Robust energy shaping control of mechanical systems, Syst. Control Lett., 62 (2013), 770-780.  doi: 10.1016/j.sysconle.2013.05.011.  Google Scholar

[42]

A. J. van der Schaft, Hamiltonian dynamics with external forces and observations, Mathematical Systems Theory, 15 (1982), 145-168.  doi: 10.1007/BF01786977.  Google Scholar

[43]

A. J. van der Schaft, Stabilization of Hamiltonian systems, Nonlinear Analysis, Theory, Methods & Applications, 10 (1986), 1021-1035.  doi: 10.1016/0362-546X(86)90086-6.  Google Scholar

[44]

A. S. ShiriaevJ. W. Perram and C. C. Canudas, Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach, IEEE Trans. Automat. Contr., 50 (2005), 1164-1176.  doi: 10.1109/TAC.2005.852568.  Google Scholar

[45]

J. C. Willems, System theoretic models for the analysis of physical systems, Ricerche di Automatica, 10 (1979), 71-106.   Google Scholar

[46]

C. WoolseyC. ReddyA. BlochD. ChangN. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10 (2004), 478-496.  doi: 10.3166/ejc.10.478-496.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Advanced Book Program, Reading, Mass., 1978.  Google Scholar

[2]

S. Arimoto and F. Miyazaki, Stability and robustness of pid feedback control for robot manipulators of sensory capability, Robotics Research: 1st Internat. Symp., M. Brady, R. P. Paul (Eds. ), Cambridge: MIT Press, (1983), 783-799. Google Scholar

[3]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978.  Google Scholar

[4]

D. R. AucklyL. V. Kapitanski and W. White, Control of nonlinear underactuated systems, Comm. Pure Appl. Math., 53 (2000), 354-369.  doi: 10.1002/(SICI)1097-0312(200003)53:3<354::AID-CPA3>3.0.CO;2-U.  Google Scholar

[5]

A. Bacciotti and L. Rosier, Regularity of Liapunov functions for stable systems, Systems & Control Letters, 41 (2000), 265-270.  doi: 10.1016/S0167-6911(00)00062-1.  Google Scholar

[6]

A. M. BlochP. S. KrishnaprasadJ. E. Marsden and G. Sánchez de Alvarez, Stabilization of rigid body dynamics by internal and external torques, Automatica, 28 (1992), 745-756.  doi: 10.1016/0005-1098(92)90034-D.  Google Scholar

[7]

A. M. BlochN. E. Leonard and J. E. Marsden, Stabilization of mechanical systems using controlled lagrangians, Proc. of the 36th IEEE Conf. on Decision and Control, (1997), 2356-2361.  doi: 10.1109/MCS.2010.939943.  Google Scholar

[8]

A. M. BlochN. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems Ⅰ: The first matching theorem, IEEE Trans. Automat.Control, 45 (2000), 2253-2270.  doi: 10.1109/9.895562.  Google Scholar

[9]

A. M. BlochD. E. ChangN. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems Ⅱ: Potential shaping, IEEE Trans. Automat. Control., 46 (2001), 1556-1571.  doi: 10.1109/9.956051.  Google Scholar

[10]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.  Google Scholar

[11]

W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, New York-London, 1975.  Google Scholar

[12]

R. W. Brockett, Control theory and analytical mechanics, in 1976 Ames Research Center (NASA) Conference on Geometric Control Theory, (R. Hermann and C. Martin, eds. ), Math Sci Press, Brookline, Massachusetts, Lie Groups: History, Frontiers, and Applications, 7 (1977), 1-48.  Google Scholar

[13]

F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Springer-Verlag, New York, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[14]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets J. Math. Phys. , 47 (2006), 022902, 29 pp. doi: 10.1063/1.2165797.  Google Scholar

[15]

M. Chaalal and N. Achour, Stabilization of a class of mechanical systems with impulse effects by lyapunov constraints, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), 2015,335-340. doi: 10.1109/MMAR.2015.7283898.  Google Scholar

[16]

D. E. Chang, The method of controlled Lagrangians: Energy plus force shaping, SIAM J. Control and Optimization, 48 (2010), 4821-4845.  doi: 10.1137/070691310.  Google Scholar

[17]

D. E. Chang, Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation, IEEE Trans. Automat. Contr., 55 (2010), 1888-1893.  doi: 10.1109/TAC.2010.2049279.  Google Scholar

[18]

D. E. Chang, Generalization of the IDA-PBC method for stabilization of mechanical systems, Proc. of the 18th Mediterranean Conf. on Control & Automation, (2010), 226-230.  doi: 10.1109/MED.2010.5547672.  Google Scholar

[19]

D. E. Chang, On the method of interconnection and damping assignment passivity-based control for the stabilization of mechanical systems, Regular and Chaotic Dynamics, 19 (2014), 556-575.  doi: 10.1134/S1560354714050049.  Google Scholar

[20]

D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems, ESAIM: Control, Optimisation and Calculus of Variations (Special Issue Dedicated to JL Lions), 8 (2002), 393-422. doi: 10.1051/cocv:2002045.  Google Scholar

[21]

N. Crasta, R. Ortega, H. Pillai and J. Velazquez, The Matching Equations of Energy Shaping Controllers for Mechanical Systems are not Simplified with Generalized Forces, Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, University of Bologna, Bertinoro, Italy, 2012. Google Scholar

[22]

S. Grillo, Sistemas Noholónomos Generalizados, Ph. D. thesis, Instituto Balseiro, 2007. Google Scholar

[23]

S. Grillo, Higher order constrained Hamiltonian systems Journal of Mathematical Physics, 50 (2009), 082901, 34 pp. doi: 10.1063/1.3194782.  Google Scholar

[24]

S. GrilloF. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, Int. Journal of Geom. Meth. in Mod. Physics, 7 (2010), 857-886.  doi: 10.1142/S0219887810004580.  Google Scholar

[25]

S. GrilloJ. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization, Journal of Geom. Mech., 3 (2011), 145-196.  doi: 10.3934/jgm.2011.3.145.  Google Scholar

[26]

S. Grillo, L. Salomone and M. Zuccalli, On the asymptotic stabilizability of underactuated systems with two degrees of freedom and the Lyapunov constraint based method, preprint, arXiv: 1604.08475. Google Scholar

[27]

J. Hamberg, Gerneral Matching Conditions in the Theory of Controlled Lagrangians, in Proc. CDC, Phoenix, AZ, 1999. Google Scholar

[28]

C. Kellett, Classical converse theorems in Lyapunov's second method, Dyn. Syst. Ser. B, 20 (2015), 2333-2360, arXiv:1502.  doi: 10.3934/dcdsb.2015.20.2333.  Google Scholar

[29]

H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 2002. Google Scholar

[30]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, John Wiley & Son, New York, 1996.  Google Scholar

[31]

P. Krishnaprasad, Lie-Poisson structures, dual-spin spacecraft and asymptotic stability, Nonl. Anal. Th. Meth. and Appl., 9 (1985), 1011-1035.  doi: 10.1016/0362-546X(85)90083-5.  Google Scholar

[32]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353-364.   Google Scholar

[33]

C.-M. Marle, Various approaches to conservative and nonconservative non-holonomic systems, Rep. Math. Phys., 42 (1998), 211-229.  doi: 10.1016/S0034-4877(98)80011-6.  Google Scholar

[34]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, New York, 1999. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[35]

J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis and Applications, Springer-Verlag, New York, 2001. Google Scholar

[36]

J. L. Massera, Contributions to stability theory, Annals of Math., 64 (1956), 182-206.  doi: 10.2307/1969955.  Google Scholar

[37]

Erratum in Annals of Math., 68 (1958), 202. Google Scholar

[38]

R. OrtegaM. W. SpongF. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, 47 (2002), 1218-1233.  doi: 10.1109/TAC.2002.800770.  Google Scholar

[39]

D. Pérez, Sistemas Noholónomos Generalizados y su Aplicación a la Teoría de Control Automático Mediante Vínculos Cinemáticos, Proyecto Integrador, Instituto Balseiro, 2006. Google Scholar

[40]

D. Pérez, Sistemas con Vínculos de Orden Superior y su Aplicación a la Teoría de Control Automático, Master thesis, Instituto Balseiro, 2007. Google Scholar

[41]

J. G. RomeroA. Donaire and R. Ortega, Robust energy shaping control of mechanical systems, Syst. Control Lett., 62 (2013), 770-780.  doi: 10.1016/j.sysconle.2013.05.011.  Google Scholar

[42]

A. J. van der Schaft, Hamiltonian dynamics with external forces and observations, Mathematical Systems Theory, 15 (1982), 145-168.  doi: 10.1007/BF01786977.  Google Scholar

[43]

A. J. van der Schaft, Stabilization of Hamiltonian systems, Nonlinear Analysis, Theory, Methods & Applications, 10 (1986), 1021-1035.  doi: 10.1016/0362-546X(86)90086-6.  Google Scholar

[44]

A. S. ShiriaevJ. W. Perram and C. C. Canudas, Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach, IEEE Trans. Automat. Contr., 50 (2005), 1164-1176.  doi: 10.1109/TAC.2005.852568.  Google Scholar

[45]

J. C. Willems, System theoretic models for the analysis of physical systems, Ricerche di Automatica, 10 (1979), 71-106.   Google Scholar

[46]

C. WoolseyC. ReddyA. BlochD. ChangN. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10 (2004), 478-496.  doi: 10.3166/ejc.10.478-496.  Google Scholar

[1]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[2]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[3]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[4]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[5]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[6]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[7]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[8]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[9]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[10]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[11]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[12]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[13]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[16]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[17]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[18]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[19]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[20]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (67)
  • HTML views (243)
  • Cited by (0)

[Back to Top]