The principles of geometric mechanics are extended to the physical elements of mechanics, including space and time, rigid bodies, constraints, forces, and dynamics. What is arrived at is a comprehensive and rigorous presentation of basic mechanics, starting with precise formulations of the physical axioms. A few components of the presentation are novel. One is a mathematical presentation of force and torque, providing certain well-known, but seldom clearly exposited, fundamental theorems about force and torque. The classical principles of Virtual Work and Lagrange-d'Alembert are also given clear mathematical statements in various guises and contexts. Another novel facet of the presentation is its derivation of the Euler-Lagrange equations. Standard derivations of the Euler-Lagrange equations from the equations of motion for Newtonian mechanics are typically done for interconnections of particles. Here this is carried out in a coordinate-free rmner for rigid bodies, giving for the first time a direct geometric path from the Newton-Euler equations to the Euler-Lagrange equations in the rigid body setting.
Citation: |
R. Abraham and J. E. Marsden,
Foundations of Mechanics, 2nd edition, Addison Wesley, Reading, MA, 1978.
![]() ![]() |
|
R. Abraham, J. E. Marsden and T. S. Ratiu,
Manifolds, Tensor Analysis, and Applications, 2nd edition, no. 75 in Applied Mathematical Sciences, Springer-Verlag, New York/Heidelberg/Berlin, 1988.
doi: 10.1007/978-1-4612-1029-0.![]() ![]() ![]() |
|
V. I. Arnol'ed,
Mathematical Methods of Classical Mechanics, 2nd edition, no. 60 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1978, New edition: [![]() ![]() |
|
V. I. Arnol'd,
Mathematical Methods of Classical Mechanics, 2nd edition, no. 60 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1989, First edition: [![]() |
|
R. E. Artz
, Classical mechanics in Galilean space-time, Foundations of Physics, 11 (1981)
, 679-697.
doi: 10.1007/BF00726944.![]() ![]() ![]() |
|
M. Berger,
Geometry I, Universitext, Springer-Verlag, New York/Heidelberg/Berlin, 1987.
doi: 10.1007/978-3-540-93815-6.![]() ![]() |
|
A. Bhand and A. D. Lewis, Rigid body mechanics in Galilean spacetimes Journal of Mathematical Physics, 46 (2005), 102902, 29 pp.
doi: 10.1063/1.2060547.![]() ![]() ![]() |
|
A. M. Bloch,
Nonholonomic Mechanics and Control, no. 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 2003.
doi: 10.1007/b97376.![]() ![]() ![]() |
|
B. Brogliato,
Nonsmooth Mechanics, Third edition. Communications and Control Engineering Series. Springer, [Cham], 2016.
doi: 10.1007/978-3-319-28664-8.![]() ![]() ![]() |
|
F. Bullo and A. D. Lewis,
Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Systems, no. 49 in Texts in Applied Mathematics. Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7.![]() ![]() ![]() |
|
H. Cendra
, D. D. Holm
, J. E. Marsden
and T. S. Ratiu
, Lagrangian reduction, the Euler-Poincaré equations, and semidirect products, American Mathematical Society Translations, Series 2, 186 (1998)
, 1-25.
doi: 10.1090/trans2/186/01.![]() ![]() ![]() |
|
D. L. Cohn,
Measure Theory, 2nd edition, Birkhäuser Advanced Texts, Birkhäuser, Boston/Basel/Stuttgart, 2013.
doi: 10.1007/978-1-4614-6956-8.![]() ![]() ![]() |
|
J. Cortés
, M. de León
, D. M. de Diego
and S. Martínez
, Mechanical systems subjected to generalized non-holonomic constraints, Proceedings of the Royal Society. London. Series A. Mathematical and Physical Sciences, 457 (2001)
, 651-670.
doi: 10.1098/rspa.2000.0686.![]() ![]() ![]() |
|
M. Crampin
, On the concept of angular velocity, European Journal of Physics, 7 (1986)
, 287-293.
doi: 10.1088/0143-0807/7/4/014.![]() ![]() ![]() |
|
M. R. Flannery
, The enigma of nonholonomic constraints, American Journal of Physics, 73 (2005)
, 265-272.
doi: 10.1119/1.1830501.![]() ![]() ![]() |
|
C. Glocker,
Set Valued Force Laws, no. 1 in Lecture Notes in Applied Mechanics, Springer-Verlag, New York/Heidelberg/Berlin, 2001.
doi: 10.1007/978-3-540-44479-4.![]() ![]() ![]() |
|
H. Goldstein,
Classical Mechanics, Addison Wesley, Reading, MA, 1951, New edition: [![]() ![]() |
|
H. Goldstein, C. P. Poole, Jr and J. L. Safko,
Classical Mechanics, 3rd edition, Addison Wesley, Reading, MA, 2001, Original edition: [![]() |
|
X. Grácia
, J. Marin-Solano
and M.-C. Muñoz-Lecanda
, Some geometric aspects of variational calculus in constrained systems, Reports on Mathematical Physics, 51 (2003)
, 127-148.
doi: 10.1016/S0034-4877(03)80006-X.![]() ![]() ![]() |
|
A. Hatcher,
Algebraic Topology, Cambridge University Press, New York/Port Chester/Melbourne/Sydney, 2002.
![]() |
|
D. Husemoller,
Fibre Bundles, 3rd edition, no. 20 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1994.
doi: 10.1007/978-1-4757-2261-1.![]() ![]() ![]() |
|
S. Jafarpour and A. D. Lewis,
Time-Varying Vector Fields and Their Flows, Springer Briefs in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 2014.
doi: 10.1007/978-3-319-10139-2.![]() ![]() ![]() |
|
Y. Kanno,
Nonsmooth Mechanics and Convex Optimization, CRC Press, Boca Raton, FL, 2011.
doi: 10.1201/b10839.![]() ![]() ![]() |
|
P. V. Kharlomov
, A critique of some mathematical models of mechanical systems with differential constraints, Journal of Applied Mathematics and Mechanics. Translation of the Soviet journal Prikladnaya Matematika i Mekhanika, 56 (1992)
, 584-594.
doi: 10.1016/0021-8928(92)90016-2.![]() ![]() ![]() |
|
S. Kobayashi and K. Nomizu,
Foundations of Differential Geometry, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969.
![]() ![]() |
|
V. V. Kozlov
, The problem of realizing constraints in dynamics, Journal of Applied Mathematics and Mechanics. Translation of the Soviet journal Prikladnaya Matematika i Mekhanika, 56 (1992)
, 594-600.
doi: 10.1016/0021-8928(92)90017-3.![]() ![]() ![]() |
|
J. L. Lagrange,
Méchanique Analitique, Chez la Veuve Desaint, Paris, 1788, Translation: [![]() |
|
J. L. Lagrange,
Analytical Mechanics, No. 191 in Boston Studies in the Philosophy of Science, Kluwer
Academic Publishers, Dordrecht, 1997, Original edition: [![]() ![]() ![]() |
|
A. D. Lewis
, The geometry of the Gibbs-Appell equations and Gauss's Principle of Least Constraint, Reports on Mathematical Physics, 38 (1996)
, 11-28.
doi: 10.1016/0034-4877(96)87675-0.![]() ![]() ![]() |
|
A. D. Lewis
, Affine connections and distributions with applications to nonholonomic mechanics, Reports on Mathematical Physics, 42 (1998)
, 135-164.
doi: 10.1016/S0034-4877(98)80008-6.![]() ![]() ![]() |
|
A. D. Lewis
, Is it worth learning differential geometric methods for modelling and control of mechanical systems?, Robotica, 26 (2007)
, 765-777.
![]() |
|
A. D. Lewis
and R. M. Murray
, Variational principles for constrained systems: Theory and experiment, International Journal of Non-Linear Mechanics, 30 (1995)
, 793-815.
doi: 10.1016/0020-7462(95)00024-0.![]() ![]() ![]() |
|
P. Liberrmn and C. -M. Marle,
Symplectic Geometry and Analytical Mechanics, no. 35 in Mathematics and its Applications, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1987.
doi: 10.1007/978-94-009-3807-6.![]() ![]() ![]() |
|
J. E. Marsden and T. R. Hughes,
Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, NJ, 1983, Reprint: [![]() |
|
J. E. Marsden and T. R. Hughes,
Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Original
edition: [![]() ![]() |
|
J. E. Marsden
and J. Scheurle
, The reduced Euler-Lagrange equations, Fields Institute Communications, Fields Institute, 1 (1993)
, 139-164.
![]() ![]() |
|
M. D. P. Monteiro Marques,
Differential Inclusions in Nonsmooth Mechanical Problems, No. 9 in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston/Basel/Stuttgart, 1993.
doi: 10.1007/978-3-0348-7614-8.![]() ![]() ![]() |
|
R. M. Murray, Z. X. Li and S. S. Sastry,
A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994.
![]() ![]() |
|
O. M. O'Reilly,
Intermediate Dynamics for Engineers, Cambridge University Press, New York/Port Chester/Melbourne/Sydney, 2008.
doi: 10.1017/CBO9780511791352.![]() ![]() ![]() |
|
J. G. Papastavridis,
Tensor Calculus and Analytical Dynamics, Library of Engineering Mathematics, CRC Press, Boca Raton, FL, 1999.
![]() ![]() |
|
L. A. Pars,
A Treatise on Analytical Dynamics, John Wiley and Sons, New York, 1965.
![]() ![]() |
|
M. Spivak,
Physics for Mathematicians. Mechanics I, Publish or Perish, Inc., Houston, 2010.
![]() ![]() |
|
C. Truesdell and W. Noll,
The Non-Linear Field Theories of Mechanics, no. 3 in Handbuch der Physik, Springer-Verlag, New York/Heidelberg/Berlin, 1965, New edition: [![]() ![]() |
|
C. Truesdell and W. Noll,
The Non-Linear Field Theories of Mechanics, Springer-Verlag, New York/Heidelberg/Berlin, 2004,
Original edition: [![]() |
|
E. T. Whittaker,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. Cambridge University Press, New York, 1959, New
edition: [![]() ![]() |
|
E. T. Whittaker,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Mathematical Library, Cambridge University Press, New
York/Port Chester/Melbourne/Sydney, 1988, Original
edition: [![]() ![]() ![]() |
A rigid transformation with spatial and body frames
Rod with tip constrained to move in a plane
Central torque-force on a rigid body in a configuration