
- Previous Article
- JGM Home
- This Issue
-
Next Article
On the relationship between the energy shaping and the Lyapunov constraint based methods
The physical foundations of geometric mechanics
Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada |
The principles of geometric mechanics are extended to the physical elements of mechanics, including space and time, rigid bodies, constraints, forces, and dynamics. What is arrived at is a comprehensive and rigorous presentation of basic mechanics, starting with precise formulations of the physical axioms. A few components of the presentation are novel. One is a mathematical presentation of force and torque, providing certain well-known, but seldom clearly exposited, fundamental theorems about force and torque. The classical principles of Virtual Work and Lagrange-d'Alembert are also given clear mathematical statements in various guises and contexts. Another novel facet of the presentation is its derivation of the Euler-Lagrange equations. Standard derivations of the Euler-Lagrange equations from the equations of motion for Newtonian mechanics are typically done for interconnections of particles. Here this is carried out in a coordinate-free rmner for rigid bodies, giving for the first time a direct geometric path from the Newton-Euler equations to the Euler-Lagrange equations in the rigid body setting.
References:
[1] |
R. Abraham and J. E. Marsden,
Foundations of Mechanics, 2nd edition, Addison Wesley, Reading, MA, 1978. |
[2] |
R. Abraham, J. E. Marsden and T. S. Ratiu,
Manifolds, Tensor Analysis, and Applications, 2nd edition, no. 75 in Applied Mathematical Sciences, Springer-Verlag, New York/Heidelberg/Berlin, 1988.
doi: 10.1007/978-1-4612-1029-0. |
[3] |
V. I. Arnol'ed,
Mathematical Methods of Classical Mechanics, 2nd edition, no. 60 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1978, New edition: [ |
[4] |
V. I. Arnol'd,
Mathematical Methods of Classical Mechanics, 2nd edition, no. 60 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1989, First edition: [ |
[5] |
R. E. Artz,
Classical mechanics in Galilean space-time, Foundations of Physics, 11 (1981), 679-697.
doi: 10.1007/BF00726944. |
[6] |
M. Berger,
Geometry I, Universitext, Springer-Verlag, New York/Heidelberg/Berlin, 1987.
doi: 10.1007/978-3-540-93815-6. |
[7] |
A. Bhand and A. D. Lewis, Rigid body mechanics in Galilean spacetimes Journal of Mathematical Physics, 46 (2005), 102902, 29 pp.
doi: 10.1063/1.2060547. |
[8] |
A. M. Bloch,
Nonholonomic Mechanics and Control, no. 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 2003.
doi: 10.1007/b97376. |
[9] |
B. Brogliato,
Nonsmooth Mechanics, Third edition. Communications and Control Engineering Series. Springer, [Cham], 2016.
doi: 10.1007/978-3-319-28664-8. |
[10] |
F. Bullo and A. D. Lewis,
Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Systems, no. 49 in Texts in Applied Mathematics. Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[11] |
H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu,
Lagrangian reduction, the Euler-Poincaré equations, and semidirect products, American Mathematical Society Translations, Series 2, 186 (1998), 1-25.
doi: 10.1090/trans2/186/01. |
[12] |
D. L. Cohn,
Measure Theory, 2nd edition, Birkhäuser Advanced Texts, Birkhäuser, Boston/Basel/Stuttgart, 2013.
doi: 10.1007/978-1-4614-6956-8. |
[13] |
J. Cortés, M. de León, D. M. de Diego and S. Martínez,
Mechanical systems subjected to generalized non-holonomic constraints, Proceedings of the Royal Society. London. Series A. Mathematical and Physical Sciences, 457 (2001), 651-670.
doi: 10.1098/rspa.2000.0686. |
[14] |
M. Crampin,
On the concept of angular velocity, European Journal of Physics, 7 (1986), 287-293.
doi: 10.1088/0143-0807/7/4/014. |
[15] |
M. R. Flannery,
The enigma of nonholonomic constraints, American Journal of Physics, 73 (2005), 265-272.
doi: 10.1119/1.1830501. |
[16] |
C. Glocker,
Set Valued Force Laws, no. 1 in Lecture Notes in Applied Mechanics, Springer-Verlag, New York/Heidelberg/Berlin, 2001.
doi: 10.1007/978-3-540-44479-4. |
[17] |
H. Goldstein,
Classical Mechanics, Addison Wesley, Reading, MA, 1951, New edition: [ |
[18] |
H. Goldstein, C. P. Poole, Jr and J. L. Safko,
Classical Mechanics, 3rd edition, Addison Wesley, Reading, MA, 2001, Original edition: [ |
[19] |
X. Grácia, J. Marin-Solano and M.-C. Muñoz-Lecanda,
Some geometric aspects of variational calculus in constrained systems, Reports on Mathematical Physics, 51 (2003), 127-148.
doi: 10.1016/S0034-4877(03)80006-X. |
[20] |
A. Hatcher, Algebraic Topology, Cambridge University Press, New York/Port Chester/Melbourne/Sydney, 2002. Google Scholar |
[21] |
D. Husemoller,
Fibre Bundles, 3rd edition, no. 20 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1994.
doi: 10.1007/978-1-4757-2261-1. |
[22] |
S. Jafarpour and A. D. Lewis,
Time-Varying Vector Fields and Their Flows, Springer Briefs in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 2014.
doi: 10.1007/978-3-319-10139-2. |
[23] |
Y. Kanno,
Nonsmooth Mechanics and Convex Optimization, CRC Press, Boca Raton, FL, 2011.
doi: 10.1201/b10839. |
[24] |
P. V. Kharlomov,
A critique of some mathematical models of mechanical systems with differential constraints, Journal of Applied Mathematics and Mechanics. Translation of the Soviet journal Prikladnaya Matematika i Mekhanika, 56 (1992), 584-594.
doi: 10.1016/0021-8928(92)90016-2. |
[25] |
S. Kobayashi and K. Nomizu,
Foundations of Differential Geometry, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[26] |
V. V. Kozlov,
The problem of realizing constraints in dynamics, Journal of Applied Mathematics and Mechanics. Translation of the Soviet journal Prikladnaya Matematika i Mekhanika, 56 (1992), 594-600.
doi: 10.1016/0021-8928(92)90017-3. |
[27] |
J. L. Lagrange,
Méchanique Analitique, Chez la Veuve Desaint, Paris, 1788, Translation: [ |
[28] |
J. L. Lagrange,
Analytical Mechanics, No. 191 in Boston Studies in the Philosophy of Science, Kluwer
Academic Publishers, Dordrecht, 1997, Original edition: [ |
[29] |
A. D. Lewis,
The geometry of the Gibbs-Appell equations and Gauss's Principle of Least Constraint, Reports on Mathematical Physics, 38 (1996), 11-28.
doi: 10.1016/0034-4877(96)87675-0. |
[30] |
A. D. Lewis,
Affine connections and distributions with applications to nonholonomic mechanics, Reports on Mathematical Physics, 42 (1998), 135-164.
doi: 10.1016/S0034-4877(98)80008-6. |
[31] |
A. D. Lewis, Is it worth learning differential geometric methods for modelling and control of mechanical systems?, Robotica, 26 (2007), 765-777. Google Scholar |
[32] |
A. D. Lewis and R. M. Murray,
Variational principles for constrained systems: Theory and experiment, International Journal of Non-Linear Mechanics, 30 (1995), 793-815.
doi: 10.1016/0020-7462(95)00024-0. |
[33] |
P. Liberrmn and C. -M. Marle,
Symplectic Geometry and Analytical Mechanics, no. 35 in Mathematics and its Applications, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1987.
doi: 10.1007/978-94-009-3807-6. |
[34] |
J. E. Marsden and T. R. Hughes,
Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, NJ, 1983, Reprint: [ |
[35] |
J. E. Marsden and T. R. Hughes,
Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Original
edition: [ |
[36] |
J. E. Marsden and J. Scheurle,
The reduced Euler-Lagrange equations, Fields Institute Communications, Fields Institute, 1 (1993), 139-164.
|
[37] |
M. D. P. Monteiro Marques,
Differential Inclusions in Nonsmooth Mechanical Problems, No. 9 in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston/Basel/Stuttgart, 1993.
doi: 10.1007/978-3-0348-7614-8. |
[38] |
R. M. Murray, Z. X. Li and S. S. Sastry,
A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994. |
[39] |
O. M. O'Reilly,
Intermediate Dynamics for Engineers, Cambridge University Press, New York/Port Chester/Melbourne/Sydney, 2008.
doi: 10.1017/CBO9780511791352. |
[40] |
J. G. Papastavridis,
Tensor Calculus and Analytical Dynamics, Library of Engineering Mathematics, CRC Press, Boca Raton, FL, 1999. |
[41] |
L. A. Pars,
A Treatise on Analytical Dynamics, John Wiley and Sons, New York, 1965. |
[42] |
M. Spivak,
Physics for Mathematicians. Mechanics I, Publish or Perish, Inc., Houston, 2010. |
[43] |
C. Truesdell and W. Noll,
The Non-Linear Field Theories of Mechanics, no. 3 in Handbuch der Physik, Springer-Verlag, New York/Heidelberg/Berlin, 1965, New edition: [ |
[44] |
C. Truesdell and W. Noll,
The Non-Linear Field Theories of Mechanics, Springer-Verlag, New York/Heidelberg/Berlin, 2004,
Original edition: [ |
[45] |
E. T. Whittaker,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. Cambridge University Press, New York, 1959, New
edition: [ |
[46] |
E. T. Whittaker,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Mathematical Library, Cambridge University Press, New
York/Port Chester/Melbourne/Sydney, 1988, Original
edition: [ |
show all references
References:
[1] |
R. Abraham and J. E. Marsden,
Foundations of Mechanics, 2nd edition, Addison Wesley, Reading, MA, 1978. |
[2] |
R. Abraham, J. E. Marsden and T. S. Ratiu,
Manifolds, Tensor Analysis, and Applications, 2nd edition, no. 75 in Applied Mathematical Sciences, Springer-Verlag, New York/Heidelberg/Berlin, 1988.
doi: 10.1007/978-1-4612-1029-0. |
[3] |
V. I. Arnol'ed,
Mathematical Methods of Classical Mechanics, 2nd edition, no. 60 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1978, New edition: [ |
[4] |
V. I. Arnol'd,
Mathematical Methods of Classical Mechanics, 2nd edition, no. 60 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1989, First edition: [ |
[5] |
R. E. Artz,
Classical mechanics in Galilean space-time, Foundations of Physics, 11 (1981), 679-697.
doi: 10.1007/BF00726944. |
[6] |
M. Berger,
Geometry I, Universitext, Springer-Verlag, New York/Heidelberg/Berlin, 1987.
doi: 10.1007/978-3-540-93815-6. |
[7] |
A. Bhand and A. D. Lewis, Rigid body mechanics in Galilean spacetimes Journal of Mathematical Physics, 46 (2005), 102902, 29 pp.
doi: 10.1063/1.2060547. |
[8] |
A. M. Bloch,
Nonholonomic Mechanics and Control, no. 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 2003.
doi: 10.1007/b97376. |
[9] |
B. Brogliato,
Nonsmooth Mechanics, Third edition. Communications and Control Engineering Series. Springer, [Cham], 2016.
doi: 10.1007/978-3-319-28664-8. |
[10] |
F. Bullo and A. D. Lewis,
Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Systems, no. 49 in Texts in Applied Mathematics. Springer-Verlag, New York, 2005.
doi: 10.1007/978-1-4899-7276-7. |
[11] |
H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu,
Lagrangian reduction, the Euler-Poincaré equations, and semidirect products, American Mathematical Society Translations, Series 2, 186 (1998), 1-25.
doi: 10.1090/trans2/186/01. |
[12] |
D. L. Cohn,
Measure Theory, 2nd edition, Birkhäuser Advanced Texts, Birkhäuser, Boston/Basel/Stuttgart, 2013.
doi: 10.1007/978-1-4614-6956-8. |
[13] |
J. Cortés, M. de León, D. M. de Diego and S. Martínez,
Mechanical systems subjected to generalized non-holonomic constraints, Proceedings of the Royal Society. London. Series A. Mathematical and Physical Sciences, 457 (2001), 651-670.
doi: 10.1098/rspa.2000.0686. |
[14] |
M. Crampin,
On the concept of angular velocity, European Journal of Physics, 7 (1986), 287-293.
doi: 10.1088/0143-0807/7/4/014. |
[15] |
M. R. Flannery,
The enigma of nonholonomic constraints, American Journal of Physics, 73 (2005), 265-272.
doi: 10.1119/1.1830501. |
[16] |
C. Glocker,
Set Valued Force Laws, no. 1 in Lecture Notes in Applied Mechanics, Springer-Verlag, New York/Heidelberg/Berlin, 2001.
doi: 10.1007/978-3-540-44479-4. |
[17] |
H. Goldstein,
Classical Mechanics, Addison Wesley, Reading, MA, 1951, New edition: [ |
[18] |
H. Goldstein, C. P. Poole, Jr and J. L. Safko,
Classical Mechanics, 3rd edition, Addison Wesley, Reading, MA, 2001, Original edition: [ |
[19] |
X. Grácia, J. Marin-Solano and M.-C. Muñoz-Lecanda,
Some geometric aspects of variational calculus in constrained systems, Reports on Mathematical Physics, 51 (2003), 127-148.
doi: 10.1016/S0034-4877(03)80006-X. |
[20] |
A. Hatcher, Algebraic Topology, Cambridge University Press, New York/Port Chester/Melbourne/Sydney, 2002. Google Scholar |
[21] |
D. Husemoller,
Fibre Bundles, 3rd edition, no. 20 in Graduate Texts in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 1994.
doi: 10.1007/978-1-4757-2261-1. |
[22] |
S. Jafarpour and A. D. Lewis,
Time-Varying Vector Fields and Their Flows, Springer Briefs in Mathematics, Springer-Verlag, New York/Heidelberg/Berlin, 2014.
doi: 10.1007/978-3-319-10139-2. |
[23] |
Y. Kanno,
Nonsmooth Mechanics and Convex Optimization, CRC Press, Boca Raton, FL, 2011.
doi: 10.1201/b10839. |
[24] |
P. V. Kharlomov,
A critique of some mathematical models of mechanical systems with differential constraints, Journal of Applied Mathematics and Mechanics. Translation of the Soviet journal Prikladnaya Matematika i Mekhanika, 56 (1992), 584-594.
doi: 10.1016/0021-8928(92)90016-2. |
[25] |
S. Kobayashi and K. Nomizu,
Foundations of Differential Geometry, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. |
[26] |
V. V. Kozlov,
The problem of realizing constraints in dynamics, Journal of Applied Mathematics and Mechanics. Translation of the Soviet journal Prikladnaya Matematika i Mekhanika, 56 (1992), 594-600.
doi: 10.1016/0021-8928(92)90017-3. |
[27] |
J. L. Lagrange,
Méchanique Analitique, Chez la Veuve Desaint, Paris, 1788, Translation: [ |
[28] |
J. L. Lagrange,
Analytical Mechanics, No. 191 in Boston Studies in the Philosophy of Science, Kluwer
Academic Publishers, Dordrecht, 1997, Original edition: [ |
[29] |
A. D. Lewis,
The geometry of the Gibbs-Appell equations and Gauss's Principle of Least Constraint, Reports on Mathematical Physics, 38 (1996), 11-28.
doi: 10.1016/0034-4877(96)87675-0. |
[30] |
A. D. Lewis,
Affine connections and distributions with applications to nonholonomic mechanics, Reports on Mathematical Physics, 42 (1998), 135-164.
doi: 10.1016/S0034-4877(98)80008-6. |
[31] |
A. D. Lewis, Is it worth learning differential geometric methods for modelling and control of mechanical systems?, Robotica, 26 (2007), 765-777. Google Scholar |
[32] |
A. D. Lewis and R. M. Murray,
Variational principles for constrained systems: Theory and experiment, International Journal of Non-Linear Mechanics, 30 (1995), 793-815.
doi: 10.1016/0020-7462(95)00024-0. |
[33] |
P. Liberrmn and C. -M. Marle,
Symplectic Geometry and Analytical Mechanics, no. 35 in Mathematics and its Applications, D. Reidel Publishing Company, Dordrecht/Boston/Lancaster/Tokyo, 1987.
doi: 10.1007/978-94-009-3807-6. |
[34] |
J. E. Marsden and T. R. Hughes,
Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, NJ, 1983, Reprint: [ |
[35] |
J. E. Marsden and T. R. Hughes,
Mathematical Foundations of Elasticity, Dover Publications, Inc., New York, 1994, Original
edition: [ |
[36] |
J. E. Marsden and J. Scheurle,
The reduced Euler-Lagrange equations, Fields Institute Communications, Fields Institute, 1 (1993), 139-164.
|
[37] |
M. D. P. Monteiro Marques,
Differential Inclusions in Nonsmooth Mechanical Problems, No. 9 in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Boston/Basel/Stuttgart, 1993.
doi: 10.1007/978-3-0348-7614-8. |
[38] |
R. M. Murray, Z. X. Li and S. S. Sastry,
A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, FL, 1994. |
[39] |
O. M. O'Reilly,
Intermediate Dynamics for Engineers, Cambridge University Press, New York/Port Chester/Melbourne/Sydney, 2008.
doi: 10.1017/CBO9780511791352. |
[40] |
J. G. Papastavridis,
Tensor Calculus and Analytical Dynamics, Library of Engineering Mathematics, CRC Press, Boca Raton, FL, 1999. |
[41] |
L. A. Pars,
A Treatise on Analytical Dynamics, John Wiley and Sons, New York, 1965. |
[42] |
M. Spivak,
Physics for Mathematicians. Mechanics I, Publish or Perish, Inc., Houston, 2010. |
[43] |
C. Truesdell and W. Noll,
The Non-Linear Field Theories of Mechanics, no. 3 in Handbuch der Physik, Springer-Verlag, New York/Heidelberg/Berlin, 1965, New edition: [ |
[44] |
C. Truesdell and W. Noll,
The Non-Linear Field Theories of Mechanics, Springer-Verlag, New York/Heidelberg/Berlin, 2004,
Original edition: [ |
[45] |
E. T. Whittaker,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. Cambridge University Press, New York, 1959, New
edition: [ |
[46] |
E. T. Whittaker,
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge Mathematical Library, Cambridge University Press, New
York/Port Chester/Melbourne/Sydney, 1988, Original
edition: [ |



[1] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[2] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[3] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[4] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[5] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[6] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[7] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[8] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[9] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[10] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[11] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[12] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[13] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[14] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[15] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[16] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[17] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[18] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[19] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[20] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]