In this paper we explore the discretization of Euler-Poincaré-Suslov equations on SO(3), i.e. of the Suslov problem. We show that the consistency order corresponding to the unreduced and reduced setups, when the discrete reconstruction equation is given by a Cayley retraction map, are related to each other in a nontrivial way. We give precise conditions under which general and variational integrators generate a discrete flow preserving the constraint distribution. We establish general consistency bounds and illustrate the performance of several discretizations by some plots. Moreover, along the lines of [15] we show that any constraints-preserving discretization may be understood as being generated by the exact evolution map of a time-periodic non-autonomous perturbation of the original continuous-time nonholonomic system.
Citation: |
Figure 1. In this figure we display the performance of the midpoint rule ($\overline{\mbox{DSP }}(\omega^k,\lambda_{k+1};\omega^{k+1}) = 0$, with inertia matrix $\mathbb{I}$ and initial values $\omega_1(0)$ and $\omega_2(0)$ introduced above) for the nonholonomic rigid body with a time step of size $\epsilon = 10^{-3}$. The solid red line is obtained through a RK4 integrator (which we consider an accurate approximation of the continuous nonlinear dynamics over a short time interval), while the blue dots represent the performance of the midpoint rule. The plots $(a)$ and $(b)$ correspond to the dynamical variables $\omega_1$, $\omega_2$, while $(c)$ displays the Lagrange multipliers $\lambda.$ On the other hand $(d)$ shows the inconsistent multipliers generated by the nonholonomic variational integrator. Finally, $(e)$ and $(f)$ show the preservation of the constraints and the energy $E_l(\hat\omega)$ up through round off errors, respectively.
Figure 2. This figure displays the comparison between the midpoint rule (the same as in Figure 1) and the variational integrator (37), (38), for a time step of size $\epsilon = 10^0 = 1$ (we recall that this integrator is also order 2 consistent in the dynamical variables). The former is represented by the green points and the latter by the blue ones, while the solid red line still represents the performance of a RK4 method. Variables $\omega_1$ $(a)$, $\omega_2$ $(b)$, $\lambda$ $(c)$ and $E_l$ $(d)$ are displayed, while $(e)$ shows the preservation of the constraints by the variational integrator up through round off errors. We observe a better performance of the variational integrator, mainly with respect to the preservation of energy, a fact which, considering bigger time steps, leads to the conclusion that its convergence to the actual solution is much faster and its long-term behavior is much more accurate.
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt,
Mathematical Aspects of Classical and Celestial Mechanics; Dynamical Systems Ⅲ, Springer-Verlag, New York, 1989.
![]() |
|
A. M. Bloch,
Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics Series 24, Springer-Verlag New-York, 2003.
![]() ![]() |
|
A. M. Bloch
, P. S. Krishnaprasad
, J. E. Marsden
and R. Murray
, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996)
, 21-99.
doi: 10.1007/BF02199365.![]() ![]() ![]() |
|
A. I. Bobenko
and Y. B. Suris
, Discrete lagrangian reduction, discrete Euler-Poincaré equations and semidirect products, Lett. Math. Phys., 49 (1999)
, 79-93.
doi: 10.1023/A:1007654605901.![]() ![]() ![]() |
|
N. Bou-Rabee
and J. E. Marsden
, Hamilton-Pontryagin integrators on Lie groups: Introduction and structure-preserving properties, Foundations of Computational Mathematics, 9 (2009)
, 197-219.
doi: 10.1007/s10208-008-9030-4.![]() ![]() ![]() |
|
F. Cantrijn
, M. de León
, J. C. Marrero
and D. Martín de Diego
, Reduction of nonholonomic mechanical systems with symmetry, Reports on Mathematical Physics, 42 (1998)
, 25-45.
doi: 10.1016/S0034-4877(98)80003-7.![]() ![]() ![]() |
|
J. Cortés
and E. Martínez
, Nonholonomic integrators, Nonlinearity, 14 (2001)
, 1365-1392.
doi: 10.1088/0951-7715/14/5/322.![]() ![]() ![]() |
|
Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem,
SIGMA: Symmetry Integrability Geom. Methods Appl. , 3 (2007), Paper 044, 15 pp.
![]() ![]() |
|
Y. N. Fedorov
and D. V. Zenkov
, Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005)
, 2211-2241.
doi: 10.1088/0951-7715/18/5/017.![]() ![]() ![]() |
|
S. Ferraro
, D. Iglesias
and D. Martín de Diego
, Momentum and energy preserving integrators for nonholonomic dynamics, Nonlinearity, 21 (2008)
, 1911-1928.
doi: 10.1088/0951-7715/21/8/009.![]() ![]() ![]() |
|
S. Ferraro
, F. Jiménez
and D. Martín de Diego
, New developments on the geometric nonholonomic integrator, Nonlinearity, 28 (2015)
, 871-900.
doi: 10.1088/0951-7715/28/4/871.![]() ![]() ![]() |
|
B. Fielder and J. Scheurle, Discretization of homoclinic orbits, rapid forcing and invisible chaos,
Memoirs of the American Mathematical Society, 119 (1996), viii+79 pp.
![]() ![]() |
|
E. Hairer, C. Lubich and G. Wanner,
Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, 31, Springer-Verlag Berlin, 2002.
![]() ![]() |
|
D. Iglesias
, J. C. Marrero
, D. Martín de Diego
and E. Martínez
, Discrete nonholonomic Lagrangian systems on Lie groupoids, Journal of Nonlinear Sciences, 18 (2008)
, 351-397.
doi: 10.1007/s00332-007-9012-8.![]() ![]() ![]() |
|
F. Jiménez
and J. Scheurle
, On the discretization of nonholonomic mechanics in ${{\mathbb{R}}^{n}}$, Journal of Geometric Mechanics, 7 (2015)
, 43-80.
doi: 10.3934/jgm.2015.7.43.![]() ![]() ![]() |
|
M. Kobilarov
, D. Martín de Diego
and S. Ferraro
, Ferraro, Simulating nonholonomic dynamics, Boletín de la Sociedad de Matemática Aplicada SeMA, 50 (2010)
, 61-81.
![]() ![]() |
|
V. V. Kozlov
, Invariant measures of the Euler-Poincaré equations on Lie algebras, Funct. Anal. Appl., 22 (1988)
, 58-59.
![]() ![]() |
|
M. de León
, A historical review on nonholonomic mechanics, Rev. R. Acad. Ciencias Exactas Fís. Nat. Serie A, 106 (2012)
, 191-224.
doi: 10.1007/s13398-011-0046-2.![]() ![]() ![]() |
|
J. E. Marsden
, S. Pekarsky
and S. Shkoller
, Discrete Euler-Poincaré and Lie-Poisson equations, Nonlinearity, 12 (1999)
, 1647-1662.
doi: 10.1088/0951-7715/12/6/314.![]() ![]() ![]() |
|
J. E. Marsden
, S. Pekarsky
and S. Shkoller
, Symmetry reduction of discrete Lagrangian mechanics on Lie groups, Journal of Geometry and Physics, 36 (2000)
, 140-151.
doi: 10.1016/S0393-0440(00)00018-8.![]() ![]() ![]() |
|
J. E. Marsden
and M. West
, Discrete Mechanics and variational integrators, Acta Numerica, 10 (2001)
, 357-514.
doi: 10.1017/S096249290100006X.![]() ![]() ![]() |
|
R. McLachlan
and M. Perlmutter
, Integrators for nonholonomic mechanical systems, J. Nonlinear Science, 16 (2006)
, 283-328.
doi: 10.1007/s00332-005-0698-1.![]() ![]() ![]() |
|
J. Moser
and A. P. Veselov
, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys, 139 (1991)
, 217-243.
doi: 10.1007/BF02352494.![]() ![]() ![]() |
|
G. Suslov,
Theoretical Mechanics,
2, Kiev (in Russian), 1902.
![]() |
|
A. Weinstein
, Lagrangian mechanics and groupoids, Fields Inst. Comm., 7 (1996)
, 207-231.
![]() ![]() |
In this figure we display the performance of the midpoint rule (
This figure displays the comparison between the midpoint rule (the same as in Figure 1) and the variational integrator (37), (38), for a time step of size