\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized variational calculus for continuous and discrete mechanical systems

This work has been partially supported by UNS, Argentina (project PGI 24/ZL06); FONCYT, Argentina (project PICT 2010-2746); CONICET, Argentina (project PIP 2010–2012 11220090101018); MEC (Spain) Grants MTM2013-42870-P, MTM2009-08166-E, and IRSES-project "Geomech-246981"

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider a generalization of variational calculus which allows us to consider in the same framework different cases of mechanical systems, for instance, Lagrangian mechanics, Hamiltonian mechanics, systems subjected to constraints, optimal control theory... This generalized variational calculus is based on two main notions: the tangent lift of curves and the notion of complete lift of a vector field. Both concepts are also adapted for the case of skew-symmetric algebroids, therefore, our formalism easily extends to the case of Lie algebroids and nonholonomic systems (see also [20]). Hence, this framework automatically includes reduced mechanical systems subjected or not to constraints. Finally, we show that our formalism can be used to tackle the case of discrete mechanics, including reduced systems, systems subjected to constraints and discrete optimal control theory.

    Mathematics Subject Classification: Primary: 70HXX; Secondary: 37J60, 49K15, 49M25, 53Z05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. Abraham and J. E. Marsden, Foundation of Mechanics, Addison Wesley, second edition, 1978.
    [2] J. L. Anderson and P. G. Bergmann, Constraints in covariant field theories, Physical Rev. (2), 83 (1951), 1018-1025. doi: 10.1103/PhysRev.83.1018.
    [3] V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, volume 3 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, third edition, 2006. [Dynamical systems. Ⅲ], Translated from the Russian original by E. Khukhro.
    [4] M. Barbero-LiñánM. de LeónD. Martín de DiegoJ. C. Marrero and M. C. Muñoz Lecanda, Kinematic reduction and the Hamilton-Jacobi equation, Journal of Geometric Mechanics, 4 (2012), 207-237.  doi: 10.3934/jgm.2012.4.207.
    [5] M. Barbero-Liñán and M. C. Muñoz-Lecanda, Geometric approach to Pontryagin's maximum principle, Acta Appl. Math., 108 (2009), 429-485.  doi: 10.1007/s10440-008-9320-5.
    [6] A. M. BlochJ. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dyn. Syst., 24 (2009), 187-222.  doi: 10.1080/14689360802609344.
    [7] A. M. Bloch and P. E. Crouch, Nonholonomic and vakonomic control systems on Riemannian manifolds, Dynamics and Control of Mechanical Systems, the Falling Cat and Related Problems, 1 (1993), 25-52. 
    [8] B. Bonnard and M. Chyba, Sub-Riemannian geometry: The martinet case, In Geometric Control and Non-Holonomic Mechanics, volume 25, pages 79-100. Canadian Mathematical society, 1998.
    [9] F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325.  doi: 10.1016/0393-0440(95)00016-X.
    [10] J. Cortés MonforteM. de LeónD. Martín de Diego and S. Martinez, Geometric description of vakonomic and nonholonomic dynamics, comparison of solutions, SIAM Journal on Control and Optimization, 5 (2003), 1389-1412.  doi: 10.1137/S036301290036817X.
    [11] J. Cortés MonforteM. de León and S. Martinez, The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems. the vakonomic bracket, J. Math. Phys., 41 (2000), 2090-2120.  doi: 10.1063/1.533229.
    [12] M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics. Dynamical systems, An International Journal, 25 (2010), 159-187.  doi: 10.1080/14689360903360888.
    [13] M. de León, F. Jiménez and D. Martín de Diego, Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings, J. Phys. A, 45 (2012), 205204, 29pp. doi: 10.1088/1751-8113/45/20/205204.
    [14] M. de LeónJ. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. of Algebra, 129 (1990), 194-230. 
    [15] M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, volume 112 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1985).
    [16] M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies, North-Holland, Amsterdam, 1989.
    [17] P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math., 2 (1950), 129-148. 
    [18] P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326-332. 
    [19] P. A. M. Dirac, Lectures on Quantum Mechanics, volume 2 of Belfer Graduate School of Science Monographs Series, Belfer Graduate School of Science, New York; produced and distributed by Academic Press, Inc., New York, 1967. Second printing of the 1964 original.
    [20] K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, Journal of Physics A: Mathematical and theoretical, 41 (2008), 175204, 25 pp. doi: 10.1088/1751-8113/41/17/175204.
    [21] J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17pp. doi: 10.1063/1.3049752.
    [22] P. A. Griffiths, Exterior Differential Systems and the Calculus of Variations, volume 25 of Progress in Mathematics. Birkhäuser, Boston, Mass., 1983.
    [23] D. D. Holm, Geometric Mechanics. Part Ⅰ, Imperial College Press, London, second edition, 2011. Dynamics and symmetry.
    [24] D. D. Holm, Geometric Mechanics. Part Ⅱ. Rotating, Translating and Rolling, Imperial College Press, London, second edition, 2011. doi: 10.1142/p802.
    [25] L. Hsu, Calculus of variations via the Griffiths formalism, J. Differential Geom., 36 (1992), 551-589. 
    [26] A. IbortM. de LeónJ. C. Marrero and D. Martín de Diego, Dirac brackets in constrained dynamics, Fortschr. Phys., 47 (1999), 459-492.  doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E.
    [27] D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, A general framework for nonholonomic mechanics: Nonholonomic systems on Lie affgebroids, Journal of Mathematical Physics. Amer. Inst. Phys., 48 (2007), 083513, 45 pp. doi: 10.1063/1.2776845.
    [28] D. IglesiasJ. C. MarreroD. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dynamical Systems: And International Journal, 23 (2008), 351-397.  doi: 10.1080/14689360802294220.
    [29] D. Iglesias-PonteJ. C. MarreroD. Martín de Diego and E. Padrón, Discrete dynamics in implicit form, Discrete Contin. Dyn. Syst., 33 (2013), 1117-1135.  doi: 10.3934/dcds.2013.33.1117.
    [30] V. V. Kozlov, On the realization of constraints in dynamics, Prikl. Mat. Mekh., 56 (1992), 692-698.  doi: 10.1016/0021-8928(92)90017-3.
    [31] A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiments, Int. J. Nonlinear Mech., 30 (1995), 793-815.  doi: 10.1016/0020-7462(95)00024-0.
    [32] F. L. Lewis, Optimal Control, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1986.
    [33] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, volume 124 of London Math. Soc. Lect. Notes Series, Cambridge University Press, Cambridge, 1987. doi: 10.1017/CBO9780511661839.
    [34] K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452.  doi: 10.1215/S0012-7094-94-07318-3.
    [35] J. C. MarreroD. Martín de Diego and A. Stern, Symplectic groupoids and discrete constrained Lagrangian mechanics, DCDS-A, 35 (2015), 367-397.  doi: 10.3934/dcds.2015.35.367.
    [36] J. C. MarreroD. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.  doi: 10.1088/0951-7715/19/6/006.
    [37] J. C. Marrero, D. Martín de Diego and E. Martínez, The local description of discrete mechanics, Geometry, Mechanics, and Dynamics, 285-317, Fields Inst. Commun., 73, Springer, New York, 2015. doi: 10.1007/978-1-4939-2441-7_13.
    [38] J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.
    [39] J. E. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, volume 17. Springer-Verlag, New York, 1994. Second edition, 1999. doi: 10.1007/978-0-387-21792-5.
    [40] E. Martínez, Lagrangian mechanics on Lie algebroids, Acta. Appl. Math., 67 (2001), 295-320.  doi: 10.1023/A:1011965919259.
    [41] E. Martínez, Reduction in optimal control theory, Rep. Math. Phys., 53 (2004), 79-90.  doi: 10.1016/S0034-4877(04)90005-5.
    [42] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.
    [43] L. A. Pars, Treatise on Analytical Dynamics, Heinemann, London, 1965.
    [44] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Translated by D. E. Brown. A Pergamon Press Book. The Macmillan Co., New York, 1964.
    [45] W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A675-A678. 
    [46] A. Weinstein, A universal phase space for particles in yang-mills fields, Lett. Math. Phys., 2 (1978), 417-420.  doi: 10.1007/BF00400169.
    [47] A. Weinstein, Lagrangian mechanics and groupoids, Mechanics Day (Waterloo, ON, 1992) Fields Institute Communications, 7 (1996), 207-231. 
    [48] E. T. Whittaker, Treatise on the Analytical Dynamics of Particles and Rigid Bodies, Cambridge University Press, 1959.
    [49] G. Zampieri, Nonholonomic versus vakonomic dynamics, J. Diff. Equations, 163 (2000), 335-347.  doi: 10.1006/jdeq.1999.3727.
  • 加载中
SHARE

Article Metrics

HTML views(366) PDF downloads(325) Cited by(0)

Access History

Other Articles By Authors

  • on this site
  • on Google Scholar

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return