December  2018, 10(4): 419-443. doi: 10.3934/jgm.2018016

Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

* Corresponding author: Richard Cushman

Received  July 2017 Revised  September 2018 Published  November 2018

In this paper we give the Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum.

Citation: Richard Cushman, Jędrzej Śniatycki. Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum. Journal of Geometric Mechanics, 2018, 10 (4) : 419-443. doi: 10.3934/jgm.2018016
References:
[1]

N. Bohr, On the constitution of atoms and molecules (part Ⅰ), Philosophical Magazine, 26 (1913), 1-25.   Google Scholar

[2]

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.  Google Scholar

[3]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld-Heisenberg theory in geometric quantization, J. Fixed Point Theory Appl., 13 (2013), 3-24.  doi: 10.1007/s11784-013-0118-3.  Google Scholar

[4]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld Heisenberg quantization of the $2$-dimensional harmonic oscillator, arXiv: 1207.1477. Google Scholar

[5]

R. Cushman and J. Śniatycki, Shifting operators in geometric quantization, arXiv: 1808.04002. Google Scholar

[6]

P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London, 109 (1925), 642-653.   Google Scholar

[7]

P. A. M. Dirac, The Principles of Quantum Mechanics, 3d ed. Oxford, at the Clarendon Press, 1947.  Google Scholar

[8]

H. Dullin, Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963.  doi: 10.1016/j.jde.2013.01.018.  Google Scholar

[9]

W. Heisenberg, Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, (German) [On the quantum theoretical meaning of kinematic and mechanical relationship], Z. Phys., 33 (1925), 879-893.   Google Scholar

[10]

J. Śniatycki, Geometric Quantization and Quantum Mechanics, Applied Mathematical Series 30 Springer Verlag, New York, 1980.  Google Scholar

[11]

A. Sommerfeld, Zur Theorie der Balmerschen Serie, (German) [On the theory of the Balmer series], Sitzungberichte der Bayerischen Akademie der Wissenschaften (Mü nchen), mathematisch-physikalische Klasse, (1915), 425-458. Google Scholar

show all references

References:
[1]

N. Bohr, On the constitution of atoms and molecules (part Ⅰ), Philosophical Magazine, 26 (1913), 1-25.   Google Scholar

[2]

R. H. Cushman and L. M. Bates, Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015. doi: 10.1007/978-3-0348-0918-4.  Google Scholar

[3]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld-Heisenberg theory in geometric quantization, J. Fixed Point Theory Appl., 13 (2013), 3-24.  doi: 10.1007/s11784-013-0118-3.  Google Scholar

[4]

R. Cushman and J. Śniatycki, Bohr-Sommerfeld Heisenberg quantization of the $2$-dimensional harmonic oscillator, arXiv: 1207.1477. Google Scholar

[5]

R. Cushman and J. Śniatycki, Shifting operators in geometric quantization, arXiv: 1808.04002. Google Scholar

[6]

P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London, 109 (1925), 642-653.   Google Scholar

[7]

P. A. M. Dirac, The Principles of Quantum Mechanics, 3d ed. Oxford, at the Clarendon Press, 1947.  Google Scholar

[8]

H. Dullin, Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963.  doi: 10.1016/j.jde.2013.01.018.  Google Scholar

[9]

W. Heisenberg, Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, (German) [On the quantum theoretical meaning of kinematic and mechanical relationship], Z. Phys., 33 (1925), 879-893.   Google Scholar

[10]

J. Śniatycki, Geometric Quantization and Quantum Mechanics, Applied Mathematical Series 30 Springer Verlag, New York, 1980.  Google Scholar

[11]

A. Sommerfeld, Zur Theorie der Balmerschen Serie, (German) [On the theory of the Balmer series], Sitzungberichte der Bayerischen Akademie der Wissenschaften (Mü nchen), mathematisch-physikalische Klasse, (1915), 425-458. Google Scholar

Figure 1.  The graph of $H\left( {x,y} \right) = \frac{1}{2}{y^2} - \cos x + 1$ with $\left( {x,y} \right) \in \left[ { - \mathit{\boldsymbol{\pi }},\mathit{\boldsymbol{\pi }}} \right] \times {\mathbb{R}}$
Figure 2.  The ${\mathbb{Z}}_2$-reduced space in ${\mathbb{R}}^3$
[1]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[2]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[3]

Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565

[4]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[5]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[8]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (123)
  • HTML views (300)
  • Cited by (1)

Other articles
by authors

[Back to Top]