
-
Previous Article
On some aspects of the geometry of non integrable distributions and applications
- JGM Home
- This Issue
-
Next Article
On motions without falling of an inverted pendulum with dry friction
Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum
Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4, Canada |
In this paper we give the Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum.
References:
[1] |
N. Bohr, On the constitution of atoms and molecules (part Ⅰ), Philosophical Magazine, 26 (1913), 1-25. Google Scholar |
[2] |
R. H. Cushman and L. M. Bates,
Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015.
doi: 10.1007/978-3-0348-0918-4. |
[3] |
R. Cushman and J. Śniatycki,
Bohr-Sommerfeld-Heisenberg theory in geometric quantization, J. Fixed Point Theory Appl., 13 (2013), 3-24.
doi: 10.1007/s11784-013-0118-3. |
[4] |
R. Cushman and J. Śniatycki, Bohr-Sommerfeld Heisenberg quantization of the $2$-dimensional harmonic oscillator, arXiv: 1207.1477. Google Scholar |
[5] |
R. Cushman and J. Śniatycki, Shifting operators in geometric quantization, arXiv: 1808.04002. Google Scholar |
[6] |
P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London, 109 (1925), 642-653. Google Scholar |
[7] |
P. A. M. Dirac,
The Principles of Quantum Mechanics, 3d ed. Oxford, at the Clarendon Press, 1947. |
[8] |
H. Dullin,
Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963.
doi: 10.1016/j.jde.2013.01.018. |
[9] |
W. Heisenberg, Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, (German) [On the quantum theoretical meaning of kinematic and mechanical relationship], Z. Phys., 33 (1925), 879-893. Google Scholar |
[10] |
J. Śniatycki,
Geometric Quantization and Quantum Mechanics, Applied Mathematical Series 30 Springer Verlag, New York, 1980. |
[11] |
A. Sommerfeld, Zur Theorie der Balmerschen Serie, (German) [On the theory of the Balmer series], Sitzungberichte der Bayerischen Akademie der Wissenschaften (Mü nchen), mathematisch-physikalische Klasse, (1915), 425-458. Google Scholar |
show all references
References:
[1] |
N. Bohr, On the constitution of atoms and molecules (part Ⅰ), Philosophical Magazine, 26 (1913), 1-25. Google Scholar |
[2] |
R. H. Cushman and L. M. Bates,
Global Aspects of Classical Integrable Systems, second edition, Birkhäuser, Basel, 2015.
doi: 10.1007/978-3-0348-0918-4. |
[3] |
R. Cushman and J. Śniatycki,
Bohr-Sommerfeld-Heisenberg theory in geometric quantization, J. Fixed Point Theory Appl., 13 (2013), 3-24.
doi: 10.1007/s11784-013-0118-3. |
[4] |
R. Cushman and J. Śniatycki, Bohr-Sommerfeld Heisenberg quantization of the $2$-dimensional harmonic oscillator, arXiv: 1207.1477. Google Scholar |
[5] |
R. Cushman and J. Śniatycki, Shifting operators in geometric quantization, arXiv: 1808.04002. Google Scholar |
[6] |
P. A. M. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. London, 109 (1925), 642-653. Google Scholar |
[7] |
P. A. M. Dirac,
The Principles of Quantum Mechanics, 3d ed. Oxford, at the Clarendon Press, 1947. |
[8] |
H. Dullin,
Semi-global symplectic invariants of the spherical pendulum, J. Differential Equations, 254 (2013), 2942-2963.
doi: 10.1016/j.jde.2013.01.018. |
[9] |
W. Heisenberg, Über die quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen, (German) [On the quantum theoretical meaning of kinematic and mechanical relationship], Z. Phys., 33 (1925), 879-893. Google Scholar |
[10] |
J. Śniatycki,
Geometric Quantization and Quantum Mechanics, Applied Mathematical Series 30 Springer Verlag, New York, 1980. |
[11] |
A. Sommerfeld, Zur Theorie der Balmerschen Serie, (German) [On the theory of the Balmer series], Sitzungberichte der Bayerischen Akademie der Wissenschaften (Mü nchen), mathematisch-physikalische Klasse, (1915), 425-458. Google Scholar |

[1] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[2] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[3] |
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565-578. doi: 10.3934/mbe.2013.10.565 |
[4] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446 |
[5] |
Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010 |
[6] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[7] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[8] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]