December  2018, 10(4): 467-502. doi: 10.3934/jgm.2018018

A coordinate-free theory of virtual holonomic constraints

1. 

Dipartimento di Ingegneria dell'Informazione, Università di Parma, Parco Area delle Scienze 181/a, 43124 Parma, Italy

2. 

Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada

* Corresponding author

Some of the ideas of this paper appeared in preliminary form in [11]

Received  September 2017 Revised  September 2018 Published  November 2018

This paper presents a coordinate-free formulation of virtual holonomic constraints for underactuated Lagrangian control systems on Riemannian manifolds. It is shown that when a virtual constraint enjoys a regularity property, the constrained dynamics are described by an affine connection dynamical system. The affine connection of the constrained system has an elegant relationship to the Riemannian connection of the original Lagrangian control system. Necessary and sufficient conditions are given for the constrained dynamics to be Lagrangian. A key condition is that the affine connection of the constrained dynamics be metrizable. Basic results on metrizability of affine connections are first reviewed, then employed in three examples in order of increasing complexity. The last example is a double pendulum on a cart with two different actuator configurations. For this control system, a virtual constraint is employed which confines the second pendulum to within the upper half-plane.

Citation: Luca Consolini, Alessandro Costalunga, Manfredi Maggiore. A coordinate-free theory of virtual holonomic constraints. Journal of Geometric Mechanics, 2018, 10 (4) : 467-502. doi: 10.3934/jgm.2018018
References:
[1]

W. Ambrose and I. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443.  doi: 10.1090/S0002-9947-1953-0063739-1.  Google Scholar

[2]

P. Appell, Exemple de mouvement d'un point assujetti à une liaison exprimèe par une relation non-linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48-50.   Google Scholar

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), 2nd edition, Springer, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[4]

L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Annals of Mathematics, 62 (1955), 139-151.  doi: 10.2307/2007104.  Google Scholar

[5]

H. Beghin, Étude Théorique des Compas Gyrostatiques Anschütz et Sperry, PhD thesis, Faculté des sciences de Paris, 1922.  Google Scholar

[6]

W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, vol. 120, 2nd edition, Academic press, 1986.  Google Scholar

[7]

F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Texts in Applied Mathematics, Springer, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[8]

C. ChevallereauJ. Grizzle and C. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot, IEEE Transactions on Robotics, 25 (2008), 37-50.   Google Scholar

[9]

F. Clarke, Y. S. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analyisis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.  Google Scholar

[10]

L. ConsoliniM. MaggioreC. Nielsen and M. Tosques, Path following for the PVTOL aircraft, Automatica, 46 (2010), 1284-1296.  doi: 10.1016/j.automatica.2010.05.014.  Google Scholar

[11]

L. Consolini and A. Costalunga, Induced connections on virtual holonomic constraints, in IEEE Conference on Decision and Control (CDC), IEEE, 2015,139–144. Google Scholar

[12]

M. do Carmo, Riemannian Geometry, Birkhäuser Boston, 1992. doi: 10.1007/978-1-4757-2201-7.  Google Scholar

[13]

L. FreidovichA. RobertssonA. Shiriaev and R. Johansson, Periodic motions of the pendubot via virtual holonomic constraints: Theory and experiments, Automatica, 44 (2008), 785-791.  doi: 10.1016/j.automatica.2007.07.011.  Google Scholar

[14]

L. Godinho and J. Natário, An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity, Springer, 2014. doi: 10.1007/978-3-319-08666-8.  Google Scholar

[15]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer, New York, 1995. doi: 10.1007/978-1-84628-615-5.  Google Scholar

[16]

D. Jankuloski, M. Maggiore and L. Consolini, Further results on virtual holonomic constraints, in Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro, Italy, 2012. Google Scholar

[17]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, no. v. 1 in A Wiley Publication in Applied Statistics, Wiley, 1996.  Google Scholar

[18]

O. Kowalski, Metrizability of affine connections on analytic manifolds, Note di Matematica, 8 (1988), 1-11.   Google Scholar

[19]

J. Lee, Riemannian Manifolds. An Introduction to Curvature, Graduate texts in mathematics 0176, Springer, 1997. doi: 10.1007/b98852.  Google Scholar

[20]

J. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, Springer, 2013.  Google Scholar

[21]

M. Maggiore and L. Consolini, Virtual holonomic constraints for Euler-Lagrange systems, Automatic Control, IEEE Transactions on, 58 (2013), 1001-1008.  doi: 10.1109/TAC.2012.2215538.  Google Scholar

[22]

A. MohammadiM. Maggiore and L. Consolini, When is a Lagrangian control system with virtual holonomic constraints Lagrangian?, Proceedings of NOLCOS 2013, 9 (2013), 512-517.   Google Scholar

[23]

A. MohammadiM. Maggiore and L. Consolini, On the lagrangian structure of reduced dynamics under virtual holonomic constraints, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 913-935.  doi: 10.1051/cocv/2016020.  Google Scholar

[24]

J. NakanishiT. Fukuda and D. Koditschek, A brachiating robot controller, IEEE Transactions on Robotics and Automation, 16 (2000), 109-123.   Google Scholar

[25]

H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems., Springer - Verlag, New York, 1990. doi: 10.1007/978-1-4757-2101-0.  Google Scholar

[26]

K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.  Google Scholar

[27]

F. PlestanJ. GrizzleE. Westervelt and G. Abba, Stable walking of a 7-DOF biped robot, IEEE Transactions on Robotics and Automation, 19 (2003), 653-668.   Google Scholar

[28]

W. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.  Google Scholar

[29]

S. Ricardo and W. Respondek, When is a control system mechanical?, Journal of Geometric Mechanics, 2 (2010), 265-302.  doi: 10.3934/jgm.2010.2.265.  Google Scholar

[30]

B. Schmidt, Conditions on a connection to be a metric connection, Communications in Mathematical Physics, 29 (1973), 55-59.  doi: 10.1007/BF01661152.  Google Scholar

[31]

A. ShiriaevJ. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control., 50 (2005), 1164-1176.  doi: 10.1109/TAC.2005.852568.  Google Scholar

[32]

A. ShiriaevA. RobertssonJ. Perram and A. Sandberg, Periodic motion planning for virtually constrained Euler-Lagrange systems, Systems & Control Letters, 55 (2006), 900-907.  doi: 10.1016/j.sysconle.2006.06.007.  Google Scholar

[33]

A. ShiriaevL. Freidovich and S. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom, IEEE Transactions on Automatic Control, 55 (2010), 893-906.  doi: 10.1109/TAC.2010.2042000.  Google Scholar

[34]

G. Thompson, Local and global existence of metrics in two-dimensional affine manifolds, Chinese Journal of Physics, 29 (1991), 529-532.   Google Scholar

[35]

A. Vanžurová, Metrization problem for linear connections and holonomy algebras, Archivum Mathematicum (BRNO), 44 (2008), 511-521.   Google Scholar

[36]

A. Vanžurová and P. Žáčková, Metrizability of connections on two-manifolds, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 48 (2009), 157-170.   Google Scholar

[37]

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, Taylor & Francis, CRC Press, 2007. Google Scholar

[38]

E. WesterveltJ. Grizzle and D. Koditschek, Hybrid zero dynamics of planar biped robots, IEEE Transactions on Automatic Control, 48 (2003), 42-56.  doi: 10.1109/TAC.2002.806653.  Google Scholar

show all references

References:
[1]

W. Ambrose and I. Singer, A theorem on holonomy, Transactions of the American Mathematical Society, 75 (1953), 428-443.  doi: 10.1090/S0002-9947-1953-0063739-1.  Google Scholar

[2]

P. Appell, Exemple de mouvement d'un point assujetti à une liaison exprimèe par une relation non-linéaire entre les composantes de la vitesse, Rend. Circ. Mat. Palermo, 32 (1911), 48-50.   Google Scholar

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), 2nd edition, Springer, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[4]

L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds, Annals of Mathematics, 62 (1955), 139-151.  doi: 10.2307/2007104.  Google Scholar

[5]

H. Beghin, Étude Théorique des Compas Gyrostatiques Anschütz et Sperry, PhD thesis, Faculté des sciences de Paris, 1922.  Google Scholar

[6]

W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, vol. 120, 2nd edition, Academic press, 1986.  Google Scholar

[7]

F. Bullo and A. Lewis, Geometric Control of Mechanical Systems, Texts in Applied Mathematics, Springer, 2005. doi: 10.1007/978-1-4899-7276-7.  Google Scholar

[8]

C. ChevallereauJ. Grizzle and C. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot, IEEE Transactions on Robotics, 25 (2008), 37-50.   Google Scholar

[9]

F. Clarke, Y. S. Ledyaev, R. Stern and P. Wolenski, Nonsmooth Analyisis and Control Theory, Graduate Texts in Mathematics, 178. Springer-Verlag, New York, 1998.  Google Scholar

[10]

L. ConsoliniM. MaggioreC. Nielsen and M. Tosques, Path following for the PVTOL aircraft, Automatica, 46 (2010), 1284-1296.  doi: 10.1016/j.automatica.2010.05.014.  Google Scholar

[11]

L. Consolini and A. Costalunga, Induced connections on virtual holonomic constraints, in IEEE Conference on Decision and Control (CDC), IEEE, 2015,139–144. Google Scholar

[12]

M. do Carmo, Riemannian Geometry, Birkhäuser Boston, 1992. doi: 10.1007/978-1-4757-2201-7.  Google Scholar

[13]

L. FreidovichA. RobertssonA. Shiriaev and R. Johansson, Periodic motions of the pendubot via virtual holonomic constraints: Theory and experiments, Automatica, 44 (2008), 785-791.  doi: 10.1016/j.automatica.2007.07.011.  Google Scholar

[14]

L. Godinho and J. Natário, An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity, Springer, 2014. doi: 10.1007/978-3-319-08666-8.  Google Scholar

[15]

A. Isidori, Nonlinear Control Systems, 3rd edition, Springer, New York, 1995. doi: 10.1007/978-1-84628-615-5.  Google Scholar

[16]

D. Jankuloski, M. Maggiore and L. Consolini, Further results on virtual holonomic constraints, in Proceedings of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro, Italy, 2012. Google Scholar

[17]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, no. v. 1 in A Wiley Publication in Applied Statistics, Wiley, 1996.  Google Scholar

[18]

O. Kowalski, Metrizability of affine connections on analytic manifolds, Note di Matematica, 8 (1988), 1-11.   Google Scholar

[19]

J. Lee, Riemannian Manifolds. An Introduction to Curvature, Graduate texts in mathematics 0176, Springer, 1997. doi: 10.1007/b98852.  Google Scholar

[20]

J. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, Springer, 2013.  Google Scholar

[21]

M. Maggiore and L. Consolini, Virtual holonomic constraints for Euler-Lagrange systems, Automatic Control, IEEE Transactions on, 58 (2013), 1001-1008.  doi: 10.1109/TAC.2012.2215538.  Google Scholar

[22]

A. MohammadiM. Maggiore and L. Consolini, When is a Lagrangian control system with virtual holonomic constraints Lagrangian?, Proceedings of NOLCOS 2013, 9 (2013), 512-517.   Google Scholar

[23]

A. MohammadiM. Maggiore and L. Consolini, On the lagrangian structure of reduced dynamics under virtual holonomic constraints, ESAIM: Control, Optimisation and Calculus of Variations, 23 (2017), 913-935.  doi: 10.1051/cocv/2016020.  Google Scholar

[24]

J. NakanishiT. Fukuda and D. Koditschek, A brachiating robot controller, IEEE Transactions on Robotics and Automation, 16 (2000), 109-123.   Google Scholar

[25]

H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems., Springer - Verlag, New York, 1990. doi: 10.1007/978-1-4757-2101-0.  Google Scholar

[26]

K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.  Google Scholar

[27]

F. PlestanJ. GrizzleE. Westervelt and G. Abba, Stable walking of a 7-DOF biped robot, IEEE Transactions on Robotics and Automation, 19 (2003), 653-668.   Google Scholar

[28]

W. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.  Google Scholar

[29]

S. Ricardo and W. Respondek, When is a control system mechanical?, Journal of Geometric Mechanics, 2 (2010), 265-302.  doi: 10.3934/jgm.2010.2.265.  Google Scholar

[30]

B. Schmidt, Conditions on a connection to be a metric connection, Communications in Mathematical Physics, 29 (1973), 55-59.  doi: 10.1007/BF01661152.  Google Scholar

[31]

A. ShiriaevJ. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control., 50 (2005), 1164-1176.  doi: 10.1109/TAC.2005.852568.  Google Scholar

[32]

A. ShiriaevA. RobertssonJ. Perram and A. Sandberg, Periodic motion planning for virtually constrained Euler-Lagrange systems, Systems & Control Letters, 55 (2006), 900-907.  doi: 10.1016/j.sysconle.2006.06.007.  Google Scholar

[33]

A. ShiriaevL. Freidovich and S. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom, IEEE Transactions on Automatic Control, 55 (2010), 893-906.  doi: 10.1109/TAC.2010.2042000.  Google Scholar

[34]

G. Thompson, Local and global existence of metrics in two-dimensional affine manifolds, Chinese Journal of Physics, 29 (1991), 529-532.   Google Scholar

[35]

A. Vanžurová, Metrization problem for linear connections and holonomy algebras, Archivum Mathematicum (BRNO), 44 (2008), 511-521.   Google Scholar

[36]

A. Vanžurová and P. Žáčková, Metrizability of connections on two-manifolds, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, 48 (2009), 157-170.   Google Scholar

[37]

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion, Taylor & Francis, CRC Press, 2007. Google Scholar

[38]

E. WesterveltJ. Grizzle and D. Koditschek, Hybrid zero dynamics of planar biped robots, IEEE Transactions on Automatic Control, 48 (2003), 42-56.  doi: 10.1109/TAC.2002.806653.  Google Scholar

Figure 1.  Transversality condition in the definition of regular VHC
Figure 2.  The vector bundle map $\sigma: T {\cal Q}|_{\cal C} \to T {\cal C}$
Figure 3.  Coordinate systems used in Section 4.3
Figure 4.  The set ${\cal C}$ in Example 1 and its parametrization
Figure 5.  The VHC ${\cal C}$ in Example 2 and its parametrization
Figure 6.  Illustration of the case when the control accelerations are orthogonal to ${\cal C}$
Figure 7.  The parallel transport map at the north pole of the unit sphere in $\mathbb{R}^3$, with Riemannian connection induced by the Euclidean metric in $\mathbb{R}^3$. The loop $\gamma_q$ is a triangle on the sphere
Figure 8.  The double pendulum on a cart of Example 3. Case (a): control force on the cart. Case (b): control torque on the last joint. The orthogonal frame in the figure is the inertial reference frame
Figure 9.  Configurations of the double pendulum on the VHC ${\cal C}$ of Example 3. The missing configurations on the right-hand side are deduced by symmetry with respect to the vertical axis
Figure 10.  Parallel transport on $\mathbb{R} \times \mathbb{S}^1$ from $(0, 0)$ to $(s^1, s^2)$
Figure 11.  $(q_2, \dot q_2)$ orbits of a few solutions of the double pendulum on a cart subject to the VHC $q_3 = \rho(q_2)$. On the left, case (a) (force on cart). On the right, case (b) (torque on last joint)
[1]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[2]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[3]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[4]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[5]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[6]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[7]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[8]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[9]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[10]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[12]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[17]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[18]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[19]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[20]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (116)
  • HTML views (287)
  • Cited by (2)

[Back to Top]