March  2019, 11(1): 1-22. doi: 10.3934/jgm.2019001

Modified equations for variational integrators applied to Lagrangians linear in velocities

Technische Universität Berlin, Institut für Mathematik, MA 7-1, Str. des 17. Juni 136, 10623 Berlin, Germany

Received  November 2017 Revised  December 2018 Published  January 2019

Fund Project: This research was supported by the DFG Collaborative Research Center TRR 109, "Discretization in Geometry and Dynamics".

Variational integrators applied to degenerate Lagrangians that are linear in the velocities are two-step methods. The system of modified equations for a two-step method consists of the principal modified equation and one additional equation describing parasitic oscillations. We observe that a Lagrangian for the principal modified equation can be constructed using the same technique as in the case of non-degenerate Lagrangians. Furthermore, we construct the full system of modified equations by doubling the dimension of the discrete system in such a way that the principal modified equation of the extended system coincides with the full system of modified equations of the original system. We show that the extended discrete system is Lagrangian, which leads to a construction of a Lagrangian for the full system of modified equations.

Citation: Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. Journal of Geometric Mechanics, 2019, 11 (1) : 1-22. doi: 10.3934/jgm.2019001
References:
[1]

P. ChartierE. Hairer and G. Vilmart, Numerical integrators based on modified differential equations, Mathematics of computation, 76 (2007), 1941-1953.  doi: 10.1090/S0025-5718-07-01967-9.  Google Scholar

[2]

G. De La Torre and T. D. Murphey, On the benefits of surrogate lagrangians in optimal control and planning algorithms, in Decision and Control, 55th Conference on, IEEE, 2016, 7384-7391. Google Scholar

[3]

G. De La Torre and T. D. Murphey, Surrogate lagrangians for variational integrators: High order convergence with low order schemes, preprint, arXiv: 1709.03883. Google Scholar

[4]

I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963.  Google Scholar

[5]

H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley Pub. Co., Reading MA, etc., 1980.  Google Scholar

[6]

E. Hairer, Backward error analysis for multistep methods, Numerische Mathematik, 84 (1999), 199-232.  doi: 10.1007/s002110050469.  Google Scholar

[7]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, etc., 2006.  Google Scholar

[8]

A. IlchmannD. H. Owens and D. Prätzel-Wolters, Sufficient conditions for stability of linear time-varying systems, Control Letters, 9 (1987), 157-163.  doi: 10.1016/0167-6911(87)90022-3.  Google Scholar

[9]

M. Leok and J. Zhang, Discrete Hamiltonian variational integrators, IMA Journal of Numerical Analysis, 31 (2011), 1497-1532.  doi: 10.1093/imanum/drq027.  Google Scholar

[10]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica 2001, 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[11]

P. K. Newton, The N-Vortex Problem: Analytical Techniques, vol. 145, Springer, New York, etc., 2001. doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[12]

H. Poincaré, Les Méthodes Nouvelles de la Méchanique Céleste, vol. Ⅲ, Gauthier-Villars, Paris, 1987.  Google Scholar

[13]

C. W. Rowley and J. E. Marsden, Variational integrators for degenerate Lagrangians, with application to point vortices, in Decision and Control, 41st Conference on, IEEE, 2002, 1521-1527. Google Scholar

[14]

R. Skoog and C. Lau, Instability of slowly varying systems, IEEE Transactions on Automatic Control, 17 (1972), 86-92.  doi: 10.1109/tac.1972.1099866.  Google Scholar

[15]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer, New York, etc., 1999.  Google Scholar

[16]

T. M. Tyranowski and M. Desbrun, Variational partitioned Runge-Kutta methods for Lagrangians linear in velocities, preprint, arXiv: 1401.7904. Google Scholar

[17]

M. Vermeeren, Modified equations for variational integrators, Numerische Mathematik, 137 (2017), 1001-1037.  doi: 10.1007/s00211-017-0896-4.  Google Scholar

show all references

References:
[1]

P. ChartierE. Hairer and G. Vilmart, Numerical integrators based on modified differential equations, Mathematics of computation, 76 (2007), 1941-1953.  doi: 10.1090/S0025-5718-07-01967-9.  Google Scholar

[2]

G. De La Torre and T. D. Murphey, On the benefits of surrogate lagrangians in optimal control and planning algorithms, in Decision and Control, 55th Conference on, IEEE, 2016, 7384-7391. Google Scholar

[3]

G. De La Torre and T. D. Murphey, Surrogate lagrangians for variational integrators: High order convergence with low order schemes, preprint, arXiv: 1709.03883. Google Scholar

[4]

I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963.  Google Scholar

[5]

H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley Pub. Co., Reading MA, etc., 1980.  Google Scholar

[6]

E. Hairer, Backward error analysis for multistep methods, Numerische Mathematik, 84 (1999), 199-232.  doi: 10.1007/s002110050469.  Google Scholar

[7]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, etc., 2006.  Google Scholar

[8]

A. IlchmannD. H. Owens and D. Prätzel-Wolters, Sufficient conditions for stability of linear time-varying systems, Control Letters, 9 (1987), 157-163.  doi: 10.1016/0167-6911(87)90022-3.  Google Scholar

[9]

M. Leok and J. Zhang, Discrete Hamiltonian variational integrators, IMA Journal of Numerical Analysis, 31 (2011), 1497-1532.  doi: 10.1093/imanum/drq027.  Google Scholar

[10]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica 2001, 10 (2001), 357-514.  doi: 10.1017/S096249290100006X.  Google Scholar

[11]

P. K. Newton, The N-Vortex Problem: Analytical Techniques, vol. 145, Springer, New York, etc., 2001. doi: 10.1007/978-1-4684-9290-3.  Google Scholar

[12]

H. Poincaré, Les Méthodes Nouvelles de la Méchanique Céleste, vol. Ⅲ, Gauthier-Villars, Paris, 1987.  Google Scholar

[13]

C. W. Rowley and J. E. Marsden, Variational integrators for degenerate Lagrangians, with application to point vortices, in Decision and Control, 41st Conference on, IEEE, 2002, 1521-1527. Google Scholar

[14]

R. Skoog and C. Lau, Instability of slowly varying systems, IEEE Transactions on Automatic Control, 17 (1972), 86-92.  doi: 10.1109/tac.1972.1099866.  Google Scholar

[15]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Springer, New York, etc., 1999.  Google Scholar

[16]

T. M. Tyranowski and M. Desbrun, Variational partitioned Runge-Kutta methods for Lagrangians linear in velocities, preprint, arXiv: 1401.7904. Google Scholar

[17]

M. Vermeeren, Modified equations for variational integrators, Numerische Mathematik, 137 (2017), 1001-1037.  doi: 10.1007/s00211-017-0896-4.  Google Scholar

Figure 1.  Pendulum with midpoint rule (left) and trapezoidal rule (right), both with step size $ h = 0.35 $ and initial point $ (3,0) $ (top) and $ (1.5,0) $ (bottom).
Dashed curve: exact solution.
Bullets: discrete solution.
Solid curve: solution of the principal modified equation, truncated after second order.
Line segments: visualization of parasitic oscillations
Figure 2.  Leapfrogging vortex pairs with the midpoint rule. No parasitic behavior is visible
Figure 3.  Leapfrogging vortex pairs with the trapezoidal rule. One observes parasitic oscillations
Figure 4.  Enlarged versions of the right hand sections of Figures 2-3: midpoint rule (left) and trapezoidal rule (right)
[1]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[2]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[3]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[4]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[5]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[6]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[7]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[8]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[9]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[10]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[13]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[14]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[17]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[18]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[19]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (147)
  • HTML views (404)
  • Cited by (1)

Other articles
by authors

[Back to Top]