March  2019, 11(1): 59-76. doi: 10.3934/jgm.2019004

A geometric perspective on the Piola identity in Riemannian settings

Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel

* Corresponding author: Asaf Shachar

Received  May 2018 Revised  December 2018 Published  January 2019

Fund Project: This research was partially funded by the Israel Science Foundation (Grant No. 1035/17), and by a grant from the Ministry of Science, Technology and Space, Israel and the Russian Foundation for Basic Research, the Russian Federation.

The Piola identity $ \operatorname{div}\; \operatorname{cof} \;\nabla f = 0 $ is a central result in the mathematical theory of elasticity. We prove a generalized version of the Piola identity for mappings between Riemannian manifolds, using two approaches, based on different interpretations of the cofactor of a linear map: one follows the lines of the classical Euclidean derivation and the other is based on a variational interpretation via Null-Lagrangians. In both cases, we first review the Euclidean case before proceeding to the general Riemannian setting.

Citation: Raz Kupferman, Asaf Shachar. A geometric perspective on the Piola identity in Riemannian settings. Journal of Geometric Mechanics, 2019, 11 (1) : 59-76. doi: 10.3934/jgm.2019004
References:
[1]

P. Ciarlet, Mathematical Elasticity, Volume 1: Three-Dimensional Elasticity, Elsevier, 1988. Google Scholar

[2]

J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conference Series in Mathematics, 50. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. doi: 10.1090/cbms/050.  Google Scholar

[3]

L. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, 1998. doi: 10.1090/gsm/019.  Google Scholar

[4]

T. Iwaniec, Null lagrangians: Definitions, examples and applications, Warsaw Lectures, Part 2. Google Scholar

[5]

R. KupfermanC. Maor and A. Shachar, Reshetnyak Rigidity for Riemannian Manifolds, Arch. Rat. Mech. Anal., 231 (2019), 367-408.  doi: 10.1007/s00205-018-1282-9.  Google Scholar

[6]

J. Marsden and T. Hughes, Mathematical Foundations of Elasticity, Dover, 1983. Google Scholar

[7] D. Saunders, The Geometry of Jet Bundles, Cambridge University Press, 1989.  doi: 10.1017/CBO9780511526411.  Google Scholar
[8]

P. Steinmann, Geometrical Foundations of Continuum Mechanics, Springer, 2015. doi: 10.1007/978-3-662-46460-1.  Google Scholar

show all references

References:
[1]

P. Ciarlet, Mathematical Elasticity, Volume 1: Three-Dimensional Elasticity, Elsevier, 1988. Google Scholar

[2]

J. Eells and L. Lemaire, Selected Topics in Harmonic Maps, CBMS Regional Conference Series in Mathematics, 50. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. doi: 10.1090/cbms/050.  Google Scholar

[3]

L. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, 1998. doi: 10.1090/gsm/019.  Google Scholar

[4]

T. Iwaniec, Null lagrangians: Definitions, examples and applications, Warsaw Lectures, Part 2. Google Scholar

[5]

R. KupfermanC. Maor and A. Shachar, Reshetnyak Rigidity for Riemannian Manifolds, Arch. Rat. Mech. Anal., 231 (2019), 367-408.  doi: 10.1007/s00205-018-1282-9.  Google Scholar

[6]

J. Marsden and T. Hughes, Mathematical Foundations of Elasticity, Dover, 1983. Google Scholar

[7] D. Saunders, The Geometry of Jet Bundles, Cambridge University Press, 1989.  doi: 10.1017/CBO9780511526411.  Google Scholar
[8]

P. Steinmann, Geometrical Foundations of Continuum Mechanics, Springer, 2015. doi: 10.1007/978-3-662-46460-1.  Google Scholar

Figure 1.  Illustration of the geometric setting of the Euclidean Piola identity
[1]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[2]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[5]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[11]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[12]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[16]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[17]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[18]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[19]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[20]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (117)
  • HTML views (302)
  • Cited by (0)

Other articles
by authors

[Back to Top]