March  2019, 11(1): 77-122. doi: 10.3934/jgm.2019005

A comparison of vakonomic and nonholonomic dynamics with applications to non-invariant Chaplygin systems

1. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland

2. 

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, 02-097 Warsaw, Poland

3. 

Normandie Université, INSA de Rouen, LMI, 685 Avenue de l'Université 76800 Saint-Etienne-du-Rouvray, France

* Corresponding author

Received  September 2018 Revised  November 2018 Published  January 2019

Fund Project: This research was supported by the National Science Center under the grant DEC-2011/02/A/ST1/00208 "Solvability, chaos and control in quantum systems".

We study relations between vakonomically and nonholonomically constrained Lagrangian dynamics for the same set of linear constraints. The basic idea is to compare both situations at the level of generalized variational principles, not equations of motion as has been done so far. The method seems to be quite powerful and effective. In particular, it allows to derive, interpret and generalize many known results on non-Abelian Chaplygin systems. We apply it also to a class of systems on Lie groups with a left-invariant constraints distribution. Concrete examples of the unicycle in a potential field, the two-wheeled carriage and the generalized Heisenberg system are discussed.

Citation: Michał Jóźwikowski, Witold Respondek. A comparison of vakonomic and nonholonomic dynamics with applications to non-invariant Chaplygin systems. Journal of Geometric Mechanics, 2019, 11 (1) : 77-122. doi: 10.3934/jgm.2019005
References:
[1]

V. I. Arnold, E. Khukhro, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, vol. 3 of Encyclopaedia of Mathematical Sciences, Springer, 2006.  Google Scholar

[2]

A. M. Bloch and P. E. Crouch, Nonholonomic and vakonomic control systems on Riemannian manifolds, Fields Institute Communications, American Mathematical Soc., 1 (1993), 25-52.   Google Scholar

[3]

F. CantrijnJ. CortésM. De León and D. De Diego, On the geometry of generalized Chaplygin systems, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323-351.  doi: 10.1017/S0305004101005679.  Google Scholar

[4]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325.  doi: 10.1016/0393-0440(95)00016-X.  Google Scholar

[5]

J. CortésM. de LeónD. de Diego and S. Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[6]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics, Dyn. Syst., 25 (2010), 159-187.  doi: 10.1080/14689360903360888.  Google Scholar

[7]

M. Favretti, Equivalence of dynamics for nonholonomic systems with transverse constraints, J. Dyn. Diff. Equations, 10 (1998), 511-536.  doi: 10.1023/A:1022667307485.  Google Scholar

[8]

O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data, J. Phys. A: Math. Theor., 41 (2008), 344005, 20pp. doi: 10.1088/1751-8113/41/34/344005.  Google Scholar

[9]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204, 25pp. doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[10]

K. GrabowskaJ. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575.  doi: 10.1142/S0219887806001259.  Google Scholar

[11]

J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17pp. doi: 10.1063/1.3049752.  Google Scholar

[12]

X. GráciaJ. Marín-Solano and M.-C. Mũoz Lecanda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127-148.  doi: 10.1016/S0034-4877(03)80006-X.  Google Scholar

[13]

Y.-X. Guo, S.-X. Liu, C. Liu, S.-K. Luo and Y. Wang, Influence of nonholonomic constraints on variations, symplectic structure, and dynamics of mechanical systems, J. Math. Phys., 48 (2007), 082901, 11pp. doi: 10.1063/1.2762175.  Google Scholar

[14] V. Jurdjevic, Geometric Control Theory, Cambridge University Press, 1997.   Google Scholar
[15]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, Jonh Willeys & Sons, 1963.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.  doi: 10.1007/BF00375092.  Google Scholar

[17]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[18]

M. d. León, A historical review on nonholomic mechanics, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 106 (2012), 191-224.  doi: 10.1007/s13398-011-0046-2.  Google Scholar

[19]

A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiment, Int. J. Non-Linear Mechanics, 30 (1995), 793-815.  doi: 10.1016/0020-7462(95)00024-0.  Google Scholar

[20]

E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.  doi: 10.1051/cocv:2007056.  Google Scholar

[21]

V. V. Rumiantsev, On Hamiltons principle for nonholonomic systems, P. M. M. USSR, 42 (1978), 387-399.   Google Scholar

[22]

G. Terra, Vakonomic versus nonholonomic mechanics revisited, São Paulo J. Math. Sci., 12 (2018), 136-145.  doi: 10.1007/s40863-017-0062-z.  Google Scholar

[23]

W. M. Tulczyjew, The origin of variational principles, Banach Center Publications, 59 (2003), 41-75.  doi: 10.4064/bc59-0-2.  Google Scholar

show all references

References:
[1]

V. I. Arnold, E. Khukhro, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, vol. 3 of Encyclopaedia of Mathematical Sciences, Springer, 2006.  Google Scholar

[2]

A. M. Bloch and P. E. Crouch, Nonholonomic and vakonomic control systems on Riemannian manifolds, Fields Institute Communications, American Mathematical Soc., 1 (1993), 25-52.   Google Scholar

[3]

F. CantrijnJ. CortésM. De León and D. De Diego, On the geometry of generalized Chaplygin systems, Math. Proc. Cambridge Philos. Soc., 132 (2002), 323-351.  doi: 10.1017/S0305004101005679.  Google Scholar

[4]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints, J. Geom. Phys., 18 (1996), 295-325.  doi: 10.1016/0393-0440(95)00016-X.  Google Scholar

[5]

J. CortésM. de LeónD. de Diego and S. Martínez, Geometric description of vakonomic and nonholonomic dynamics. Comparison of solutions, SIAM J. Control Optim., 41 (2002), 1389-1412.  doi: 10.1137/S036301290036817X.  Google Scholar

[6]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics, Dyn. Syst., 25 (2010), 159-187.  doi: 10.1080/14689360903360888.  Google Scholar

[7]

M. Favretti, Equivalence of dynamics for nonholonomic systems with transverse constraints, J. Dyn. Diff. Equations, 10 (1998), 511-536.  doi: 10.1023/A:1022667307485.  Google Scholar

[8]

O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data, J. Phys. A: Math. Theor., 41 (2008), 344005, 20pp. doi: 10.1088/1751-8113/41/34/344005.  Google Scholar

[9]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204, 25pp. doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[10]

K. GrabowskaJ. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575.  doi: 10.1142/S0219887806001259.  Google Scholar

[11]

J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17pp. doi: 10.1063/1.3049752.  Google Scholar

[12]

X. GráciaJ. Marín-Solano and M.-C. Mũoz Lecanda, Some geometric aspects of variational calculus in constrained systems, Rep. Math. Phys., 51 (2003), 127-148.  doi: 10.1016/S0034-4877(03)80006-X.  Google Scholar

[13]

Y.-X. Guo, S.-X. Liu, C. Liu, S.-K. Luo and Y. Wang, Influence of nonholonomic constraints on variations, symplectic structure, and dynamics of mechanical systems, J. Math. Phys., 48 (2007), 082901, 11pp. doi: 10.1063/1.2762175.  Google Scholar

[14] V. Jurdjevic, Geometric Control Theory, Cambridge University Press, 1997.   Google Scholar
[15]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, Jonh Willeys & Sons, 1963.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.  doi: 10.1007/BF00375092.  Google Scholar

[17]

I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer, 1993. doi: 10.1007/978-3-662-02950-3.  Google Scholar

[18]

M. d. León, A historical review on nonholomic mechanics, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 106 (2012), 191-224.  doi: 10.1007/s13398-011-0046-2.  Google Scholar

[19]

A. D. Lewis and R. M. Murray, Variational principles for constrained systems: Theory and experiment, Int. J. Non-Linear Mechanics, 30 (1995), 793-815.  doi: 10.1016/0020-7462(95)00024-0.  Google Scholar

[20]

E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.  doi: 10.1051/cocv:2007056.  Google Scholar

[21]

V. V. Rumiantsev, On Hamiltons principle for nonholonomic systems, P. M. M. USSR, 42 (1978), 387-399.   Google Scholar

[22]

G. Terra, Vakonomic versus nonholonomic mechanics revisited, São Paulo J. Math. Sci., 12 (2018), 136-145.  doi: 10.1007/s40863-017-0062-z.  Google Scholar

[23]

W. M. Tulczyjew, The origin of variational principles, Banach Center Publications, 59 (2003), 41-75.  doi: 10.4064/bc59-0-2.  Google Scholar

Figure 1.  A homotopy-generated variation and its generator $ \xi $. Note that the homotopy with a fixed end-point(s) corresponds to a generator vanishing at that end-point(s)
Figure 2.  A (non-invariant) Chaplygin system is a principal $G$-bundle $\pi:Q \to M$, equipped with a horizontal distribution ${\rm{H}} Q$ and a Lagrangian $L:{\rm{T}} Q\to\mathbb{R}$, none of which needs to be $G$-invariant.
[1]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[2]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[3]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[4]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[7]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[8]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[9]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[10]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[11]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[12]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[13]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[14]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[15]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[16]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[17]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[18]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[19]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[20]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (134)
  • HTML views (288)
  • Cited by (0)

Other articles
by authors

[Back to Top]