-
Previous Article
Embedding Camassa-Holm equations in incompressible Euler
- JGM Home
- This Issue
-
Next Article
Riemann-Hilbert problem, integrability and reductions
Conservation laws in discrete geometry
1. | Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA |
2. | Theoretical Design Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA |
The small length scales of the dissipative processes of physical viscosity and heat conduction are typically not resolved in the numerical simulation of high Reynolds number flows in the discrete geometry of computational grids. Historically, the simulations of flows with shocks and/or turbulence have relied on solving the Euler equations with dissipative regularization. In this paper, we begin by reviewing the regularization strategies used in shock wave calculations in both a Lagrangian and an Eulerian framework. We exhibit the essential similarities with Large Eddy Simulation models of turbulence, namely that almost all of these depend on the square of the size of the computational cell. In our principal result, we justify that dependence by deriving the evolution equations for a finite-sized volume of fluid. Those evolution equations, termed finite scale Navier-Stokes (FSNS), contain dissipative terms similar to the artificial viscosity first proposed by von Neumann and Richtmyer. We describe the properties of FSNS, provide a physical interpretation of the dissipative terms and show the connection to recent concepts in fluid dynamics, including inviscid dissipation and bi-velocity hydrodynamics.
References:
[1] |
A. Alexander, Duel at Dawn, Harvard University Press, Cambridge, MA, 2010. |
[2] |
H. Alsmeyer, Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam, J. Fluid Mech., 74 (1976), 497-513. Google Scholar |
[3] |
R. Becker, Stoßbwelle und detonation, (In German), Zeitschrift für Physik, 8 (1922), 321–362. Google Scholar |
[4] |
H. A. Bethe, On the theory of shock waves for an arbitrary equation of state, Classic Papers in Shock Compression Science, J.N. Johnson & R. Cheret, eds., Springer–Verlag, New York, 1998,421–492.
doi: 10.1007/978-1-4612-2218-7_11. |
[5] |
S. Bianchini and A. Bressan,
Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math., 161 (2005), 223-342.
doi: 10.4007/annals.2005.161.223. |
[6] |
J. P. Boris and D. L. Book,
Flux–corrected transport, J. Comput. Phys., 11 (1973), 38-69.
doi: 10.1006/jcph.1997.5756. |
[7] |
H. Brenner, Kinematics of volume transport, Physica A, 349 (2004), 11-59. Google Scholar |
[8] |
H. Brenner,
Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier–Stokes–Fourier equations, Physica A, 390 (2011), 3216-3244.
doi: 10.1016/j.physa.2011.04.023. |
[9] |
E. J. Caramana, M. J. Shashkov and P. P. Whalen,
Formulations of artificial viscosity for multi–dimensional shock wave computations, J. Comput. Phys., 144 (1998), 70-97.
doi: 10.1006/jcph.1998.5989. |
[10] |
S. Y. Chen, D. D. Holm, L. G. Margolin and R. Zhang,
Direct numerical simulations of the Navier–Stokes alpha model, Physica D, 133 (1999), 66-83.
doi: 10.1016/S0167-2789(99)00099-8. |
[11] |
S. Y. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne,
Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.
doi: 10.1103/PhysRevLett.81.5338. |
[12] |
A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi,
On a Leray-$\alpha$ model of turbulence, Proc. Royal Soc. A, 461 (2005), 629-649.
doi: 10.1098/rspa.2004.1373. |
[13] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, NY, 2010, third edition.
doi: 10.1007/978-3-642-04048-1. |
[14] |
R. J. DiPerna,
Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112. |
[15] |
L. Euler, Principes généraux du mouvement des fluides, Mém. Acad. Sci. Berlin, 11, 274–315. See also an English translation by T.E. Burton, 1999: “General laws of the motion of fluids,” Fluid Dyn., 34 (1999), 801–822. Google Scholar |
[16] |
G. L. Eyink,
Energy dissipation without viscosity in ideal hydrodynamics, Physica D, 78 (1994), 222-240.
doi: 10.1016/0167-2789(94)90117-1. |
[17] |
U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995. |
[18] |
L. S. García–Colín, R. M. Velasco and F. J. Uribe,
Beyond the Navier–Stokes equations: Burnett hydrodynamics, Phys. Reports, 465 (2008), 149-189.
doi: 10.1016/j.physrep.2008.04.010. |
[19] |
B. J. Geurts and D. D. Holm, Regularization modeling for large–eddy simulation, Phys. Fluids, 15 (2003), L13–L16.
doi: 10.1063/1.1529180. |
[20] |
B. J. Geurts and D. D. Holm, Leray and LANS-$\alpha$ modeling of turbulent mixing, J. Turbulence, 7 (2006), Paper 10, 33 pp.
doi: 10.1080/14685240500501601. |
[21] |
S. K. Godunov, Different Methods for Shock Waves, Moscow State University, (Ph.D. Dissertation), 1954. Google Scholar |
[22] |
C. J. Greenshields and J. M. Reese,
The structure of shock waves as a test of Brenner's modifications to the Navier-Stokes equations, J. Fluid Mech., 580 (2007), 407-429.
doi: 10.1017/S0022112007005575. |
[23] |
F. F. Grinstein, L. G. Margolin and W. J. Rider, Implicit Large Eddy Simulation, Cambridge
University Press, NY, NY, 2007.
doi: 10.1017/CBO9780511618604. |
[24] |
J. L. Guermond, J. T. Oden and S. Prudhomme,
An interpretation of the Navier–Stokes alpha model as a frame–indifferent Leray regularization, Physica D, 177 (2003), 23-30.
doi: 10.1016/S0167-2789(02)00748-0. |
[25] |
J. L. Guermond, R. Pasquetti and B. Popov,
Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230 (2011), 4248-4267.
doi: 10.1016/j.jcp.2010.11.043. |
[26] |
A. Harten,
High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49 (1983), 357-393.
doi: 10.1016/0021-9991(83)90136-5. |
[27] |
M. W. Hecht, D. D. Holm, M. R. Petersen and B. A. Wingate, The LANS-alpha and Leray turbulence parameterizations in primitive equation ocean modeling, J. Physics A, 41 (2008), 344009, 23 pp.
doi: 10.1088/1751-8113/41/34/344009. |
[28] |
C. W. Hirt, Heuristic stability theory for finite difference equations, J. Comput. Phys., 2 (1968), 339-355. Google Scholar |
[29] |
D. D. Holm,
Kármán–Howarth theorem for the Lagrangian–averaged Navier–Stokes–alpha model of turbulence, J. Fluid Mech., 467 (2002), 205-214.
doi: 10.1017/S002211200200160X. |
[30] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173-4176. Google Scholar |
[31] |
G.M. Kremer, An Introduction to the Boltzmann Equation and Transport Processes in Gases, Springer, NY, 2010.
doi: 10.1007/978-3-642-11696-4. |
[32] |
P. D. Lax,
Mathematics and physics, Bull. Amer. Math. Soc., 45 (2008), 135-152.
doi: 10.1090/S0273-0979-07-01182-2. |
[33] |
J. Leray,
Sur les movements dun fluide visqueux remplaissant lespace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[34] |
R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.![]() ![]() |
[35] |
L. G. Margolin,
Finite-scale equations for compressible fluid flow, Phil. Trans. R. Soc. A, 367 (2009), 2861-2871.
doi: 10.1098/rsta.2008.0290. |
[36] |
L. G. Margolin, The role of the observer in classical fluid flow, Mech. Res. Comm., 57 (2014), 10-17. Google Scholar |
[37] |
L. G. Margolin and A. Hunter,
Discrete thermodynamics, Mech. Res. Comm., 93 (2018), 103-107.
doi: 10.1016/j.mechrescom.2017.10.006. |
[38] |
L. G. Margolin and C. S. Plesko, Discrete regularization, Evolution Equations and Control Theory, 8 (2019), 117-137. Google Scholar |
[39] |
L. G. Margolin, J. M. Reisner and P. M. Jordan, Entropy in self-similar shock profiles, Int. J. Nonlinear Mech., 95 (2017), 333-346. Google Scholar |
[40] |
L. G. Margolin, P. K. Smolarkiewicz and Z. Sorbjan,
Large–eddy simulations of convective boundary layers using nonoscillatory differencing, Physica D., 133 (1999), 390-397.
doi: 10.1016/S0167-2789(99)00083-4. |
[41] |
L. G. Margolin and W. J. Rider,
A rationale for implicit turbulence modelling, Int. J. Num. Methods Fluids, 39 (2002), 821-841.
doi: 10.1002/fld.331. |
[42] |
L. G. Margolin, W. J. Rider and F. F. Grinstein, Modeling turbulent flow with implicit LES, J. Turbulence, 7 (2006), Paper 15, 27 pp.
doi: 10.1080/14685240500331595. |
[43] |
M. L. Merriam,
Smoothing and the second law, Comp. Meth. Appl. Mech. Eng., 64 (1987), 177-193.
doi: 10.1016/0045-7825(87)90039-9. |
[44] |
I. Múller,
On the entropy inequality, Archive for Rational Mechanics and Analysis, 26 (1967), 118-141.
doi: 10.1007/BF00285677. |
[45] |
P. Névir, Ertel's vorticity theorems, the particle relabeling symmetry and the energy–vorticity theory of mechanics, Meteorologische Zeitschrift, 13 (2004), 485-498. Google Scholar |
[46] |
W. F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat conduction, J. Comput. Phys., 72 (1978), 78-120. Google Scholar |
[47] |
E. S. Oran and J. P. Boris, Computing turbulent shear flows–a convenient conspiracy, Computers in Physics, 7 (1993), 523-533. Google Scholar |
[48] |
A. Petersen, The philosophy of Niels Bohr, Bulletin of the Atomic Scientists, 19 (1963), 8-14. Google Scholar |
[49] |
P. Saugat, Large Eddy Simulation for Incompressible Flows, Scientific Computation. Springer-Verlag, Berlin, 2006. |
[50] |
J. Smagorinsky, General circulation experiments with the primitive equations Ⅰ. The basic experiment, Mon. Wea. Rev., 91 (1963), 99-164. Google Scholar |
[51] |
B. Schmidt, Electron beam density measurements in shock waves in argon, J. Fluid Mech., 39 (1969), 361-373. Google Scholar |
[52] |
P. K. Smolarkiewicz and L. G. Margolin,
MPDATA: A finite–difference solver for geophysical flows, J. Comput. Phys., 140 (1998), 459-480.
doi: 10.1006/jcph.1998.5901. |
[53] |
G. G. Stokes, On the theories of the internal friction of fluids in motion, Trans. Camb. Phil. Soc., 8 (1845), 287-305. Google Scholar |
[54] |
P. A. Thompson, Compressible–Fluid Dynamics, McGraw–Hill, NY, 1972. Google Scholar |
[55] |
B. van Leer,
Toward the ultimate conservative difference scheme V, J. Comput. Phys., 32 (1979), 101-136.
doi: 10.1006/jcph.1997.5757. |
[56] |
J. von Neumann and R. D. Richtmyer,
A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21 (1950), 232-237.
doi: 10.1063/1.1699639. |
[57] |
M. L. Wilkins,
Use of artificial viscosity in multidimensional fluid dynamic calculations, J. Comput. Phys., 36 (1980), 281-303.
doi: 10.1016/0021-9991(80)90161-8. |
show all references
References:
[1] |
A. Alexander, Duel at Dawn, Harvard University Press, Cambridge, MA, 2010. |
[2] |
H. Alsmeyer, Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam, J. Fluid Mech., 74 (1976), 497-513. Google Scholar |
[3] |
R. Becker, Stoßbwelle und detonation, (In German), Zeitschrift für Physik, 8 (1922), 321–362. Google Scholar |
[4] |
H. A. Bethe, On the theory of shock waves for an arbitrary equation of state, Classic Papers in Shock Compression Science, J.N. Johnson & R. Cheret, eds., Springer–Verlag, New York, 1998,421–492.
doi: 10.1007/978-1-4612-2218-7_11. |
[5] |
S. Bianchini and A. Bressan,
Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math., 161 (2005), 223-342.
doi: 10.4007/annals.2005.161.223. |
[6] |
J. P. Boris and D. L. Book,
Flux–corrected transport, J. Comput. Phys., 11 (1973), 38-69.
doi: 10.1006/jcph.1997.5756. |
[7] |
H. Brenner, Kinematics of volume transport, Physica A, 349 (2004), 11-59. Google Scholar |
[8] |
H. Brenner,
Steady-state heat conduction in quiescent fluids: Incompleteness of the Navier–Stokes–Fourier equations, Physica A, 390 (2011), 3216-3244.
doi: 10.1016/j.physa.2011.04.023. |
[9] |
E. J. Caramana, M. J. Shashkov and P. P. Whalen,
Formulations of artificial viscosity for multi–dimensional shock wave computations, J. Comput. Phys., 144 (1998), 70-97.
doi: 10.1006/jcph.1998.5989. |
[10] |
S. Y. Chen, D. D. Holm, L. G. Margolin and R. Zhang,
Direct numerical simulations of the Navier–Stokes alpha model, Physica D, 133 (1999), 66-83.
doi: 10.1016/S0167-2789(99)00099-8. |
[11] |
S. Y. Chen, C. Foias, D. D. Holm, E. Olson, E. S. Titi and S. Wynne,
Camassa–Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81 (1998), 5338-5341.
doi: 10.1103/PhysRevLett.81.5338. |
[12] |
A. Cheskidov, D. D. Holm, E. Olson and E. S. Titi,
On a Leray-$\alpha$ model of turbulence, Proc. Royal Soc. A, 461 (2005), 629-649.
doi: 10.1098/rspa.2004.1373. |
[13] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, NY, 2010, third edition.
doi: 10.1007/978-3-642-04048-1. |
[14] |
R. J. DiPerna,
Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.
doi: 10.1007/BF00752112. |
[15] |
L. Euler, Principes généraux du mouvement des fluides, Mém. Acad. Sci. Berlin, 11, 274–315. See also an English translation by T.E. Burton, 1999: “General laws of the motion of fluids,” Fluid Dyn., 34 (1999), 801–822. Google Scholar |
[16] |
G. L. Eyink,
Energy dissipation without viscosity in ideal hydrodynamics, Physica D, 78 (1994), 222-240.
doi: 10.1016/0167-2789(94)90117-1. |
[17] |
U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995. |
[18] |
L. S. García–Colín, R. M. Velasco and F. J. Uribe,
Beyond the Navier–Stokes equations: Burnett hydrodynamics, Phys. Reports, 465 (2008), 149-189.
doi: 10.1016/j.physrep.2008.04.010. |
[19] |
B. J. Geurts and D. D. Holm, Regularization modeling for large–eddy simulation, Phys. Fluids, 15 (2003), L13–L16.
doi: 10.1063/1.1529180. |
[20] |
B. J. Geurts and D. D. Holm, Leray and LANS-$\alpha$ modeling of turbulent mixing, J. Turbulence, 7 (2006), Paper 10, 33 pp.
doi: 10.1080/14685240500501601. |
[21] |
S. K. Godunov, Different Methods for Shock Waves, Moscow State University, (Ph.D. Dissertation), 1954. Google Scholar |
[22] |
C. J. Greenshields and J. M. Reese,
The structure of shock waves as a test of Brenner's modifications to the Navier-Stokes equations, J. Fluid Mech., 580 (2007), 407-429.
doi: 10.1017/S0022112007005575. |
[23] |
F. F. Grinstein, L. G. Margolin and W. J. Rider, Implicit Large Eddy Simulation, Cambridge
University Press, NY, NY, 2007.
doi: 10.1017/CBO9780511618604. |
[24] |
J. L. Guermond, J. T. Oden and S. Prudhomme,
An interpretation of the Navier–Stokes alpha model as a frame–indifferent Leray regularization, Physica D, 177 (2003), 23-30.
doi: 10.1016/S0167-2789(02)00748-0. |
[25] |
J. L. Guermond, R. Pasquetti and B. Popov,
Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230 (2011), 4248-4267.
doi: 10.1016/j.jcp.2010.11.043. |
[26] |
A. Harten,
High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49 (1983), 357-393.
doi: 10.1016/0021-9991(83)90136-5. |
[27] |
M. W. Hecht, D. D. Holm, M. R. Petersen and B. A. Wingate, The LANS-alpha and Leray turbulence parameterizations in primitive equation ocean modeling, J. Physics A, 41 (2008), 344009, 23 pp.
doi: 10.1088/1751-8113/41/34/344009. |
[28] |
C. W. Hirt, Heuristic stability theory for finite difference equations, J. Comput. Phys., 2 (1968), 339-355. Google Scholar |
[29] |
D. D. Holm,
Kármán–Howarth theorem for the Lagrangian–averaged Navier–Stokes–alpha model of turbulence, J. Fluid Mech., 467 (2002), 205-214.
doi: 10.1017/S002211200200160X. |
[30] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler–Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80 (1998), 4173-4176. Google Scholar |
[31] |
G.M. Kremer, An Introduction to the Boltzmann Equation and Transport Processes in Gases, Springer, NY, 2010.
doi: 10.1007/978-3-642-11696-4. |
[32] |
P. D. Lax,
Mathematics and physics, Bull. Amer. Math. Soc., 45 (2008), 135-152.
doi: 10.1090/S0273-0979-07-01182-2. |
[33] |
J. Leray,
Sur les movements dun fluide visqueux remplaissant lespace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[34] |
R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.![]() ![]() |
[35] |
L. G. Margolin,
Finite-scale equations for compressible fluid flow, Phil. Trans. R. Soc. A, 367 (2009), 2861-2871.
doi: 10.1098/rsta.2008.0290. |
[36] |
L. G. Margolin, The role of the observer in classical fluid flow, Mech. Res. Comm., 57 (2014), 10-17. Google Scholar |
[37] |
L. G. Margolin and A. Hunter,
Discrete thermodynamics, Mech. Res. Comm., 93 (2018), 103-107.
doi: 10.1016/j.mechrescom.2017.10.006. |
[38] |
L. G. Margolin and C. S. Plesko, Discrete regularization, Evolution Equations and Control Theory, 8 (2019), 117-137. Google Scholar |
[39] |
L. G. Margolin, J. M. Reisner and P. M. Jordan, Entropy in self-similar shock profiles, Int. J. Nonlinear Mech., 95 (2017), 333-346. Google Scholar |
[40] |
L. G. Margolin, P. K. Smolarkiewicz and Z. Sorbjan,
Large–eddy simulations of convective boundary layers using nonoscillatory differencing, Physica D., 133 (1999), 390-397.
doi: 10.1016/S0167-2789(99)00083-4. |
[41] |
L. G. Margolin and W. J. Rider,
A rationale for implicit turbulence modelling, Int. J. Num. Methods Fluids, 39 (2002), 821-841.
doi: 10.1002/fld.331. |
[42] |
L. G. Margolin, W. J. Rider and F. F. Grinstein, Modeling turbulent flow with implicit LES, J. Turbulence, 7 (2006), Paper 15, 27 pp.
doi: 10.1080/14685240500331595. |
[43] |
M. L. Merriam,
Smoothing and the second law, Comp. Meth. Appl. Mech. Eng., 64 (1987), 177-193.
doi: 10.1016/0045-7825(87)90039-9. |
[44] |
I. Múller,
On the entropy inequality, Archive for Rational Mechanics and Analysis, 26 (1967), 118-141.
doi: 10.1007/BF00285677. |
[45] |
P. Névir, Ertel's vorticity theorems, the particle relabeling symmetry and the energy–vorticity theory of mechanics, Meteorologische Zeitschrift, 13 (2004), 485-498. Google Scholar |
[46] |
W. F. Noh, Errors for calculations of strong shocks using an artificial viscosity and an artificial heat conduction, J. Comput. Phys., 72 (1978), 78-120. Google Scholar |
[47] |
E. S. Oran and J. P. Boris, Computing turbulent shear flows–a convenient conspiracy, Computers in Physics, 7 (1993), 523-533. Google Scholar |
[48] |
A. Petersen, The philosophy of Niels Bohr, Bulletin of the Atomic Scientists, 19 (1963), 8-14. Google Scholar |
[49] |
P. Saugat, Large Eddy Simulation for Incompressible Flows, Scientific Computation. Springer-Verlag, Berlin, 2006. |
[50] |
J. Smagorinsky, General circulation experiments with the primitive equations Ⅰ. The basic experiment, Mon. Wea. Rev., 91 (1963), 99-164. Google Scholar |
[51] |
B. Schmidt, Electron beam density measurements in shock waves in argon, J. Fluid Mech., 39 (1969), 361-373. Google Scholar |
[52] |
P. K. Smolarkiewicz and L. G. Margolin,
MPDATA: A finite–difference solver for geophysical flows, J. Comput. Phys., 140 (1998), 459-480.
doi: 10.1006/jcph.1998.5901. |
[53] |
G. G. Stokes, On the theories of the internal friction of fluids in motion, Trans. Camb. Phil. Soc., 8 (1845), 287-305. Google Scholar |
[54] |
P. A. Thompson, Compressible–Fluid Dynamics, McGraw–Hill, NY, 1972. Google Scholar |
[55] |
B. van Leer,
Toward the ultimate conservative difference scheme V, J. Comput. Phys., 32 (1979), 101-136.
doi: 10.1006/jcph.1997.5757. |
[56] |
J. von Neumann and R. D. Richtmyer,
A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21 (1950), 232-237.
doi: 10.1063/1.1699639. |
[57] |
M. L. Wilkins,
Use of artificial viscosity in multidimensional fluid dynamic calculations, J. Comput. Phys., 36 (1980), 281-303.
doi: 10.1016/0021-9991(80)90161-8. |
[1] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[2] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[3] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[4] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[5] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[6] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[7] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[8] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[9] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[10] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[11] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[12] |
Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 |
[13] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[14] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[15] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[16] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[17] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[18] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[19] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[20] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]