June  2019, 11(2): 239-254. doi: 10.3934/jgm.2019013

Dispersive Lamb systems

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

* Corresponding author: Peter J. Olver

Received  October 2017 Revised  March 2018 Published  May 2019

Under periodic boundary conditions, a one-dimensional dispersive medium driven by a Lamb oscillator exhibits a smooth response when the dispersion relation is asymptotically linear or superlinear at large wave numbers, but unusual fractal solution profiles emerge when the dispersion relation is asymptotically sublinear. Strikingly, this is exactly the opposite of the superlinear asymptotic regime required for fractalization and dispersive quantization, also known as the Talbot effect, of the unforced medium induced by discontinuous initial conditions.

Citation: Peter J. Olver, Natalie E. Sheils. Dispersive Lamb systems. Journal of Geometric Mechanics, 2019, 11 (2) : 239-254. doi: 10.3934/jgm.2019013
References:
[1]

M. V. BerryI. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.   Google Scholar

[2]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21pp. doi: 10.1098/rspa.2012.0407.  Google Scholar

[3]

V. ChousionisM. B. Erdoğan and N. Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. London Math. Soc., 110 (2015), 543-564.  doi: 10.1112/plms/pdu061.  Google Scholar

[4]

B. Deconinck, Q. Guo, E. Shlizerman and V. Vasan, Fokas's uniform transform method for linear systems, Quart. Appl. Math., 76 (2018), 463-488, arXiv 1705.00358. doi: 10.1090/qam/1484.  Google Scholar

[5]

B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady state heat conduction in composite walls, Proc. Roy. Soc. London A, 470 (2014), 20130605. Google Scholar

[6]

J. J. Duistermaat, Self-similarity of ``Riemann's nondifferentiable function'', Nieuw Arch. Wisk., 9 (1991), 303-337.   Google Scholar

[7]

M. B. Erdoğan, personal communication, 2018. Google Scholar

[8]

M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math., 25 (2019), 11. doi: 10.1007/s00029-019-0455-1.  Google Scholar

[9]

M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081-1090.  doi: 10.4310/MRL.2013.v20.n6.a7.  Google Scholar

[10] M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316563267.  Google Scholar
[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 1411-1443.  doi: 10.1098/rspa.1997.0077.  Google Scholar

[12]

A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Conference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008. doi: 10.1137/1.9780898717068.  Google Scholar

[13]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, Siam J. Appl. Math., 64 (2003), 484-524.  doi: 10.1137/S0036139902418717.  Google Scholar

[14]

I. A. Kunin, Elastic Media with Microstructure I, , Springer-Verlag, New York, 1982.  Google Scholar

[15]

G. L. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211.  doi: 10.1112/plms/s1-32.1.208.  Google Scholar

[16]

P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610.  doi: 10.4169/000298910x496723.  Google Scholar

[17]

P. J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-02099-0.  Google Scholar

[18]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992,353-402. doi: 10.1007/978-1-4612-2966-7_16.  Google Scholar

[19]

A. C. Scott, Soliton oscillations in DNA, Phys. Rev. A, 31 (1985), 3518-3519.  doi: 10.1103/PhysRevA.31.3518.  Google Scholar

[20]

N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, Appl. Math. Lett., 37 (2014), 107-111.  doi: 10.1016/j.aml.2014.06.006.  Google Scholar

[21]

H. F. Talbot, Facts related to optical science. No. Ⅳ, Philos. Mag., 9 (1836), 401-407.   Google Scholar

[22]

H. F. Weinberger, A First Course in Partial Differential Equations, Dover Publ., New York, 1995. Google Scholar

[23]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.  Google Scholar

show all references

References:
[1]

M. V. BerryI. Marzoli and W. Schleich, Quantum carpets, carpets of light, Physics World, 14 (2001), 39-44.   Google Scholar

[2]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves, Proc. Roy. Soc. London, 469 (2012), 20120407, 21pp. doi: 10.1098/rspa.2012.0407.  Google Scholar

[3]

V. ChousionisM. B. Erdoğan and N. Tzirakis, Fractal solutions of linear and nonlinear dispersive partial differential equations, Proc. London Math. Soc., 110 (2015), 543-564.  doi: 10.1112/plms/pdu061.  Google Scholar

[4]

B. Deconinck, Q. Guo, E. Shlizerman and V. Vasan, Fokas's uniform transform method for linear systems, Quart. Appl. Math., 76 (2018), 463-488, arXiv 1705.00358. doi: 10.1090/qam/1484.  Google Scholar

[5]

B. Deconinck, B. Pelloni and N. E. Sheils, Non-steady state heat conduction in composite walls, Proc. Roy. Soc. London A, 470 (2014), 20130605. Google Scholar

[6]

J. J. Duistermaat, Self-similarity of ``Riemann's nondifferentiable function'', Nieuw Arch. Wisk., 9 (1991), 303-337.   Google Scholar

[7]

M. B. Erdoğan, personal communication, 2018. Google Scholar

[8]

M. B. Erdoğan and G. Shakan, Fractal solutions of dispersive partial differential equations on the torus, Selecta Math., 25 (2019), 11. doi: 10.1007/s00029-019-0455-1.  Google Scholar

[9]

M. B. Erdoğan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus, Math. Res. Lett., 20 (2013), 1081-1090.  doi: 10.4310/MRL.2013.v20.n6.a7.  Google Scholar

[10] M. B. Erdoğan and N. Tzirakis, Dispersive Partial Differential Equations: Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86, Cambridge University Press, Cambridge, 2016.  doi: 10.1017/CBO9781316563267.  Google Scholar
[11]

A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London A, 453 (1997), 1411-1443.  doi: 10.1098/rspa.1997.0077.  Google Scholar

[12]

A. S. Fokas, A Unified Approach to Boundary Value Problems, CBMS-NSF Conference Series in Applied Math., vol. 78, SIAM, Philadelphia, 2008. doi: 10.1137/1.9780898717068.  Google Scholar

[13]

P. HagertyA. M. Bloch and M. I. Weinstein, Radiation induced instability, Siam J. Appl. Math., 64 (2003), 484-524.  doi: 10.1137/S0036139902418717.  Google Scholar

[14]

I. A. Kunin, Elastic Media with Microstructure I, , Springer-Verlag, New York, 1982.  Google Scholar

[15]

G. L. Lamb, On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium, Proc. London Math. Soc., 32 (1900), 208-211.  doi: 10.1112/plms/s1-32.1.208.  Google Scholar

[16]

P. J. Olver, Dispersive quantization, Amer. Math. Monthly, 117 (2010), 599-610.  doi: 10.4169/000298910x496723.  Google Scholar

[17]

P. J. Olver, Introduction to Partial Differential Equations, Undergraduate Texts in Mathematics, Springer, New York, 2014. doi: 10.1007/978-3-319-02099-0.  Google Scholar

[18]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis, Progress in Approximation Theory, Springer Ser. Comput. Math., 19, Springer, New York, 1992,353-402. doi: 10.1007/978-1-4612-2966-7_16.  Google Scholar

[19]

A. C. Scott, Soliton oscillations in DNA, Phys. Rev. A, 31 (1985), 3518-3519.  doi: 10.1103/PhysRevA.31.3518.  Google Scholar

[20]

N. E. Sheils and B. Deconinck, Heat conduction on the ring: interface problems with periodic boundary conditions, Appl. Math. Lett., 37 (2014), 107-111.  doi: 10.1016/j.aml.2014.06.006.  Google Scholar

[21]

H. F. Talbot, Facts related to optical science. No. Ⅳ, Philos. Mag., 9 (1836), 401-407.   Google Scholar

[22]

H. F. Weinberger, A First Course in Partial Differential Equations, Dover Publ., New York, 1995. Google Scholar

[23]

G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.  Google Scholar

Figure 1.  The Lamb Oscillator on the Line.
Figure 2.  The Lamb Oscillator on the Line at Large Time.
Figure 3.  The Periodic Lamb Oscillator.
Figure 4.  The Dispersive Periodic Lamb Oscillator with $ \omega (k) = k^2 $.
Figure 5.  The Dispersive Periodic Lamb Oscillator for the Klein-Gordon Model.
Figure 6.  The Dispersive Periodic Lamb Oscillator with $ \omega(k) = \sqrt{\left| k \right|} $.
Figure 7.  The Dispersive Periodic Lamb Oscillator for the Regularized Boussinesq Model.
Figure 8.  The Unidirectional Periodic Lamb Oscillator for the Transport Model.
Figure 9.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k) = {k^2} $.
Figure 10.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k) = \sqrt{k} $.
Figure 11.  The Unidirectional Dispersive Periodic Lamb Oscillator for $ \omega(k)=k^{2} /\left(1+\frac{1}{3} k^{2}\right) $
[1]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[4]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[5]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[6]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[7]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[8]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[9]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[10]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[11]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[12]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[15]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[16]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[17]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[18]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[19]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[20]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (123)
  • HTML views (250)
  • Cited by (0)

Other articles
by authors

[Back to Top]