September  2019, 11(3): 361-396. doi: 10.3934/jgm.2019019

New multisymplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity

Department of Mathematics, Ed. C-3, Campus Norte UPC, C/ Jordi Girona 1. 08034 Barcelona, Spain

Received  June 2018 Revised  March 2019 Published  August 2019

We present a covariant multisymplectic formulation for the Einstein-Palatini (or Metric-Affine) model of General Relativity (without energy-matter sources). As it is described by a first-order affine Lagrangian (in the derivatives of the fields), it is singular and, hence, this is a gauge field theory with constraints. These constraints are obtained after applying a constraint algorithm to the field equations, both in the Lagrangian and the Hamiltonian formalisms. In order to do this, the covariant field equations must be written in a suitable geometrical way, using integrable distributions which are represented by multivector fields of a certain type. We obtain and explain the geometrical and physical meaning of the Lagrangian constraints and we construct the multimomentum (covariant) Hamiltonian formalism. The gauge symmetries of the model are discussed in both formalisms and, from them, the equivalence with the Einstein-Hilbert model is established.

Citation: Jordi Gaset, Narciso Román-Roy. New multisymplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity. Journal of Geometric Mechanics, 2019, 11 (3) : 361-396. doi: 10.3934/jgm.2019019
References:
[1]

V. Aldaya and J. A. de Azcárraga, Geometric formulation of classical mechanics and field theory, Riv. Nuovo Cimento, 3 (1980), 1-66.  doi: 10.1007/BF02906204.

[2]

M. J. Bergvelt and E. A. de Kerf, The Hamiltonian structure of Yang-Mills theories and instantons (Part Ⅰ), Physica, 139A (1986), 101-124.  doi: 10.1016/0378-4371(86)90007-5.

[3]

J. Berra-MontielA. Molgado and D. Serrano-Blanco, De Donder-Weyl Hamiltonian formalism of MacDowell-Mansouri gravity, Class. Quant. Grav., 34 (2017), 235002, 14pp.  doi: 10.1088/1361-6382/aa924a.

[4]

S. Capriotti, Differential geometry, Palatini gravity and reduction, J. Math. Phys., 55 (2014), 012902, 29pp.  doi: 10.1063/1.4862855.

[5]

S. Capriotti, Unified formalism for Palatini gravity, Int. J. Geom. Meth. Mod. Phys., 15 (2018), 1850044, 33pp.  doi: 10.1142/S0219887818500445.

[6]

J. F. CariñenaM. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories, Diff. Geom. Appl., 1 (1991), 345-374.  doi: 10.1016/0926-2245(91)90013-Y.

[7]

M. CastrillónJ. Muñoz-Masqué and M. E. Rosado, First-order equivalent to Einstein-Hilbert Lagrangian, J. Math. Phys., 55 (2014), 082501, 9pp.  doi: 10.1063/1.4890555.

[8]

R. CianciS. Vignolo and D. Bruno, General Relativity as a constrained gauge theory, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 1493-1500.  doi: 10.1142/S0219887806001818.

[9]

C. Cremaschini and M. Tessarotto, Manifest covariant Hamiltonian theory of general relativity, App. Phys. Research, 8 (2016), 60-81.  doi: 10.5539/apr.v8n2p60.

[10]

C. Cremaschini and M. Tessarotto, Hamiltonian approach to GR-Part 1: Covariant theory of classical gravity, Eur. Phys. Journal C, 77 (2017), 329.  doi: 10.1140/epjc/s10052-017-4854-1.

[11]

N. Dadhich and J. M. Pons, On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection, Gen. Rel. Grav., 44 (2012), 2337-2352.  doi: 10.1007/s10714-012-1393-9.

[12]

M. de León, J. Marín-Solano and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, in New Developments in Differential Geometry, (Debrecen, 1994, eds L. Tamassi and J. Szenthe), Math. Appl. 350, Kluwer Acad. Publ., Dordrecht, 1996, 291–312. doi: 10.1007/978-94-009-0149-0_22.

[13]

M. de LeónJ. Marín–SolanoJ. C. MarreroM. C. Muñoz–Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles, Fortsch. Phys., 50 (2002), 105-169.  doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.

[14]

M. de LeónJ. Marín-SolanoJ. C. MarreroM. C. Muñoz–Lecanda and N. Román-Roy, Pre-multisymplectic constraint algorithm for field theories, Int. J. Geom. Meth. Mod. Phys., 2 (2005), 839-871.  doi: 10.1142/S0219887805000880.

[15]

A. Echeverría-EnríquezM. C. Muñoz-Lecanda and N. Román-Roy, Geometry of Lagrangian first-order classical field theories, Forts. Phys., 44 (1996), 235-280.  doi: 10.1002/prop.2190440304.

[16]

A. Echeverría-EnríquezM. C. Muñoz–Lecanda and N. Román-Roy, Multivector fields and connections: Setting Lagrangian equations in field theories, J. Math. Phys., 39 (1998), 4578-4603.  doi: 10.1063/1.532525.

[17]

A. Echeverría-EnríquezM. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of hamiltonian field theories: equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484.  doi: 10.1088/0305-4470/32/48/309.

[18]

A. Echeverría–EnríquezM. C. Muñoz–Lecanda and N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories, Rep. Math. Phys., 45 (2000), 85-105.  doi: 10.1016/S0034-4877(00)88873-4.

[19]

A. Echeverría–Enríquez, M. C. Muñoz–Lecanda and N. Román–Roy, Connections and jet fields, preprint, arXiv: 1803.10451[math.DG] (2018).

[20]

A. Einstein, Einheitliche Fieldtheorie von Gravitation und Elektrizit t, Pruess. Akad.Wiss., 414, (1925); A. Unzicker and T. Case, Translation of Einstein's attempt of a unified field theory with teleparallelism, preprint, arXiv: physics/0503046[11].

[21]

G. EspositoC. Stornaiolo and G. Gionti, Spacetime covariant form of Ashtekar's constraints, Nuovo Cim.B, 110 (1995), 1137-1152.  doi: 10.1007/BF02724605.

[22]

P. L. García, The Poincaré–Cartan invariant in the calculus of variations, Symp. Math., (1974), 219-246. 

[23]

J. GasetP. D. Prieto–Martínez and N. Román–Roy, Variational principles and symmetries on fibered multisymplectic manifolds, Comm. in Maths., 24 (2016), 137-152.  doi: 10.1515/cm-2016-0010.

[24]

J. Gaset and N. Román–Roy, Order reduction, projectability and constraints of second–order field theories and higher-order mechanics, Rep. Math. Phys., 78 (2016), 327–337. https://doi.org/10.1063/1.4940047. doi: 10.1016/S0034-4877(17)30012-5.

[25]

J. Gaset and N. Román-Roy, Multisymplectic unified formalism for Einstein-Hilbert gravity, J. Math. Phys., 59 (2018), 032502, 39pp.  doi: 10.1063/1.4998526.

[26]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. (ISBN: 981-02-1587-8.). doi: 10.1142/2199.

[27]

H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier Grenoble, 23 (1973), 203-267.  doi: 10.5802/aif.451.

[28]

M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum maps and classical relativistic fields. I. Covariant theory, preprint, arXiv: physics/9801019[math-ph] (2004).

[29]

M. J. Gotay and J.M. Nester, Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraints, in Group Theoretical Methods in Physics (eds. W. Beigelbock, A. Böhm, E. Takasugi), Lect. Notes in Phys., Springer, Berlin, 94 (1979), 272–279. doi: 10.1007/3-540-09238-2_74.

[30]

X. GráciaJ. M. Pons and N. Román-Roy, Higher order conditions for singular Lagrangian dynamics, J. Phys. A: Math. Gen., 25 (1992), 1989-2004.  doi: 10.1088/0305-4470/25/7/037.

[31]

A. Ibort and A. Spivak, On a covariant Hamiltonian description of Palatini's gravity on manifolds with boundary, preprint, arXiv: 1605.03492[math-ph] (2016).

[32]

I. V. Kanatchikov, Precanonical quantum gravity: Quantization without the space-time decomposition, Int. J. Theor. Phys., 40 (2001), 1121-1149.  doi: 10.1023/A:1017557603606.

[33]

I. V. Kanatchikov, On precanonical quantization of gravity, Nonlin. Phenom. Complex Sys., (NPCS) 17 (2014), 372–376.

[34]

I. V. Kanatchikov, On the `spin connection foam' picture of quantum gravity from precanonical quantization, in Procs. 14th Marcel Grossmann Meeting on General Relativity: "Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories", U. Rome "La Sapienza", Italy 2015, (2017), 3907–3915. doi: 10.1142/9789813226609_0519.

[35] D. Krupka, Introduction to Global Variational Geometry, Atlantis Studies in Variational Geometry, Atlantis Press, 2015. 
[36]

D. Krupka and O. Stepankova, On the Hamilton form in second order calculus of variations, in Procs. Int. Meeting on Geometry and Physics, Florence 1982, Pitagora, Bologna, 1983, 85–101.

[37]

M. MontesinosD. GonzálezM. Celad and B. Díaz, Reformulation of the symmetries of first-order general relativity, Class. Quant. Grav., 34 (2017), 205002, 13pp.  doi: 10.1088/1361-6382/aa89f3.

[38]

J. Muñoz-Masqué and M. E. Rosado, Diffeomorphism-invariant covariant Hamiltonians of a pseudo-Riemannian metric and a linear connection, Adv. Theor. Math. Phys., 16 (2012), 851-886.  doi: 10.4310/ATMP.2012.v16.n3.a3.

[39]

P. D. Prieto Martínez and N. Román-Roy, A new multisymplectic unified formalism for second-order classical field theories, J. Geom. Mech., 7 (2015), 203-253.  doi: 10.3934/jgm.2015.7.203.

[40]

N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, Symm. Integ. Geom. Methods Appl. (SIGMA), 5 (2009), Paper 100, 25 pp. doi: 10.3842/SIGMA.2009.100.

[41]

M. E. Rosado and J. Muñoz-Masqué, Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism, Diff. Geom. Apps., 35 (2014), 164-177.  doi: 10.1016/j.difgeo.2014.04.006.

[42]

M. E. Rosado and J. Muñoz-Masqué, Second-order Lagrangians admitting a first-order Hamiltonian formalism, J. Annali di Matematica, 197 (2018), 357-397.  doi: 10.1007/s10231-017-0683-y.

[43]

C. Rovelli, A note on the foundation of relativistic mechanics. Ⅱ: Covariant Hamiltonian general relativity, in Topics in Mathematical Physics, General Relativity and Cosmology (eds. H. Garcia-Compean, B. Mielnik, M. Montesinos, M. Przanowski), 397–407, World Sci. Publ., Hackensack, NJ, 2006. doi: 10.1142/9789812772732_0033.

[44]

G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812831484.

[45]

D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture notes series, 142, Cambridge University Press, Cambridge, New York 1989. (ISBN-13: 978-0521369480). doi: 10.1017/CBO9780511526411.

[46]

C. G. Torre, Local cohomology in field theory (with applications to the Einstein equations), preprint, arXiv: hep-th/9706092 (1997).

[47]

D. Vey, Multisymplectic formulation of vielbein gravity. De Donder-Weyl formulation, Hamiltonian (n-1)-forms, Class. Quantum Grav., 32 (2015), 095005, 50pp. doi: 10.1088/0264-9381/32/9/095005.

show all references

References:
[1]

V. Aldaya and J. A. de Azcárraga, Geometric formulation of classical mechanics and field theory, Riv. Nuovo Cimento, 3 (1980), 1-66.  doi: 10.1007/BF02906204.

[2]

M. J. Bergvelt and E. A. de Kerf, The Hamiltonian structure of Yang-Mills theories and instantons (Part Ⅰ), Physica, 139A (1986), 101-124.  doi: 10.1016/0378-4371(86)90007-5.

[3]

J. Berra-MontielA. Molgado and D. Serrano-Blanco, De Donder-Weyl Hamiltonian formalism of MacDowell-Mansouri gravity, Class. Quant. Grav., 34 (2017), 235002, 14pp.  doi: 10.1088/1361-6382/aa924a.

[4]

S. Capriotti, Differential geometry, Palatini gravity and reduction, J. Math. Phys., 55 (2014), 012902, 29pp.  doi: 10.1063/1.4862855.

[5]

S. Capriotti, Unified formalism for Palatini gravity, Int. J. Geom. Meth. Mod. Phys., 15 (2018), 1850044, 33pp.  doi: 10.1142/S0219887818500445.

[6]

J. F. CariñenaM. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories, Diff. Geom. Appl., 1 (1991), 345-374.  doi: 10.1016/0926-2245(91)90013-Y.

[7]

M. CastrillónJ. Muñoz-Masqué and M. E. Rosado, First-order equivalent to Einstein-Hilbert Lagrangian, J. Math. Phys., 55 (2014), 082501, 9pp.  doi: 10.1063/1.4890555.

[8]

R. CianciS. Vignolo and D. Bruno, General Relativity as a constrained gauge theory, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 1493-1500.  doi: 10.1142/S0219887806001818.

[9]

C. Cremaschini and M. Tessarotto, Manifest covariant Hamiltonian theory of general relativity, App. Phys. Research, 8 (2016), 60-81.  doi: 10.5539/apr.v8n2p60.

[10]

C. Cremaschini and M. Tessarotto, Hamiltonian approach to GR-Part 1: Covariant theory of classical gravity, Eur. Phys. Journal C, 77 (2017), 329.  doi: 10.1140/epjc/s10052-017-4854-1.

[11]

N. Dadhich and J. M. Pons, On the equivalence of the Einstein–Hilbert and the Einstein–Palatini formulations of general relativity for an arbitrary connection, Gen. Rel. Grav., 44 (2012), 2337-2352.  doi: 10.1007/s10714-012-1393-9.

[12]

M. de León, J. Marín-Solano and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, in New Developments in Differential Geometry, (Debrecen, 1994, eds L. Tamassi and J. Szenthe), Math. Appl. 350, Kluwer Acad. Publ., Dordrecht, 1996, 291–312. doi: 10.1007/978-94-009-0149-0_22.

[13]

M. de LeónJ. Marín–SolanoJ. C. MarreroM. C. Muñoz–Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles, Fortsch. Phys., 50 (2002), 105-169.  doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.

[14]

M. de LeónJ. Marín-SolanoJ. C. MarreroM. C. Muñoz–Lecanda and N. Román-Roy, Pre-multisymplectic constraint algorithm for field theories, Int. J. Geom. Meth. Mod. Phys., 2 (2005), 839-871.  doi: 10.1142/S0219887805000880.

[15]

A. Echeverría-EnríquezM. C. Muñoz-Lecanda and N. Román-Roy, Geometry of Lagrangian first-order classical field theories, Forts. Phys., 44 (1996), 235-280.  doi: 10.1002/prop.2190440304.

[16]

A. Echeverría-EnríquezM. C. Muñoz–Lecanda and N. Román-Roy, Multivector fields and connections: Setting Lagrangian equations in field theories, J. Math. Phys., 39 (1998), 4578-4603.  doi: 10.1063/1.532525.

[17]

A. Echeverría-EnríquezM. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of hamiltonian field theories: equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484.  doi: 10.1088/0305-4470/32/48/309.

[18]

A. Echeverría–EnríquezM. C. Muñoz–Lecanda and N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories, Rep. Math. Phys., 45 (2000), 85-105.  doi: 10.1016/S0034-4877(00)88873-4.

[19]

A. Echeverría–Enríquez, M. C. Muñoz–Lecanda and N. Román–Roy, Connections and jet fields, preprint, arXiv: 1803.10451[math.DG] (2018).

[20]

A. Einstein, Einheitliche Fieldtheorie von Gravitation und Elektrizit t, Pruess. Akad.Wiss., 414, (1925); A. Unzicker and T. Case, Translation of Einstein's attempt of a unified field theory with teleparallelism, preprint, arXiv: physics/0503046[11].

[21]

G. EspositoC. Stornaiolo and G. Gionti, Spacetime covariant form of Ashtekar's constraints, Nuovo Cim.B, 110 (1995), 1137-1152.  doi: 10.1007/BF02724605.

[22]

P. L. García, The Poincaré–Cartan invariant in the calculus of variations, Symp. Math., (1974), 219-246. 

[23]

J. GasetP. D. Prieto–Martínez and N. Román–Roy, Variational principles and symmetries on fibered multisymplectic manifolds, Comm. in Maths., 24 (2016), 137-152.  doi: 10.1515/cm-2016-0010.

[24]

J. Gaset and N. Román–Roy, Order reduction, projectability and constraints of second–order field theories and higher-order mechanics, Rep. Math. Phys., 78 (2016), 327–337. https://doi.org/10.1063/1.4940047. doi: 10.1016/S0034-4877(17)30012-5.

[25]

J. Gaset and N. Román-Roy, Multisymplectic unified formalism for Einstein-Hilbert gravity, J. Math. Phys., 59 (2018), 032502, 39pp.  doi: 10.1063/1.4998526.

[26]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific Publishing Co., Inc., River Edge, NJ, 1997. (ISBN: 981-02-1587-8.). doi: 10.1142/2199.

[27]

H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations, Ann. Inst. Fourier Grenoble, 23 (1973), 203-267.  doi: 10.5802/aif.451.

[28]

M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum maps and classical relativistic fields. I. Covariant theory, preprint, arXiv: physics/9801019[math-ph] (2004).

[29]

M. J. Gotay and J.M. Nester, Presymplectic Hamilton and Lagrange systems, gauge transformations and the Dirac theory of constraints, in Group Theoretical Methods in Physics (eds. W. Beigelbock, A. Böhm, E. Takasugi), Lect. Notes in Phys., Springer, Berlin, 94 (1979), 272–279. doi: 10.1007/3-540-09238-2_74.

[30]

X. GráciaJ. M. Pons and N. Román-Roy, Higher order conditions for singular Lagrangian dynamics, J. Phys. A: Math. Gen., 25 (1992), 1989-2004.  doi: 10.1088/0305-4470/25/7/037.

[31]

A. Ibort and A. Spivak, On a covariant Hamiltonian description of Palatini's gravity on manifolds with boundary, preprint, arXiv: 1605.03492[math-ph] (2016).

[32]

I. V. Kanatchikov, Precanonical quantum gravity: Quantization without the space-time decomposition, Int. J. Theor. Phys., 40 (2001), 1121-1149.  doi: 10.1023/A:1017557603606.

[33]

I. V. Kanatchikov, On precanonical quantization of gravity, Nonlin. Phenom. Complex Sys., (NPCS) 17 (2014), 372–376.

[34]

I. V. Kanatchikov, On the `spin connection foam' picture of quantum gravity from precanonical quantization, in Procs. 14th Marcel Grossmann Meeting on General Relativity: "Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories", U. Rome "La Sapienza", Italy 2015, (2017), 3907–3915. doi: 10.1142/9789813226609_0519.

[35] D. Krupka, Introduction to Global Variational Geometry, Atlantis Studies in Variational Geometry, Atlantis Press, 2015. 
[36]

D. Krupka and O. Stepankova, On the Hamilton form in second order calculus of variations, in Procs. Int. Meeting on Geometry and Physics, Florence 1982, Pitagora, Bologna, 1983, 85–101.

[37]

M. MontesinosD. GonzálezM. Celad and B. Díaz, Reformulation of the symmetries of first-order general relativity, Class. Quant. Grav., 34 (2017), 205002, 13pp.  doi: 10.1088/1361-6382/aa89f3.

[38]

J. Muñoz-Masqué and M. E. Rosado, Diffeomorphism-invariant covariant Hamiltonians of a pseudo-Riemannian metric and a linear connection, Adv. Theor. Math. Phys., 16 (2012), 851-886.  doi: 10.4310/ATMP.2012.v16.n3.a3.

[39]

P. D. Prieto Martínez and N. Román-Roy, A new multisymplectic unified formalism for second-order classical field theories, J. Geom. Mech., 7 (2015), 203-253.  doi: 10.3934/jgm.2015.7.203.

[40]

N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, Symm. Integ. Geom. Methods Appl. (SIGMA), 5 (2009), Paper 100, 25 pp. doi: 10.3842/SIGMA.2009.100.

[41]

M. E. Rosado and J. Muñoz-Masqué, Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism, Diff. Geom. Apps., 35 (2014), 164-177.  doi: 10.1016/j.difgeo.2014.04.006.

[42]

M. E. Rosado and J. Muñoz-Masqué, Second-order Lagrangians admitting a first-order Hamiltonian formalism, J. Annali di Matematica, 197 (2018), 357-397.  doi: 10.1007/s10231-017-0683-y.

[43]

C. Rovelli, A note on the foundation of relativistic mechanics. Ⅱ: Covariant Hamiltonian general relativity, in Topics in Mathematical Physics, General Relativity and Cosmology (eds. H. Garcia-Compean, B. Mielnik, M. Montesinos, M. Przanowski), 397–407, World Sci. Publ., Hackensack, NJ, 2006. doi: 10.1142/9789812772732_0033.

[44]

G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory. Constraint Systems, World Scientific Publishing Co., Inc., River Edge, NJ, 1995. doi: 10.1142/9789812831484.

[45]

D. J. Saunders, The Geometry of Jet Bundles, London Mathematical Society, Lecture notes series, 142, Cambridge University Press, Cambridge, New York 1989. (ISBN-13: 978-0521369480). doi: 10.1017/CBO9780511526411.

[46]

C. G. Torre, Local cohomology in field theory (with applications to the Einstein equations), preprint, arXiv: hep-th/9706092 (1997).

[47]

D. Vey, Multisymplectic formulation of vielbein gravity. De Donder-Weyl formulation, Hamiltonian (n-1)-forms, Class. Quantum Grav., 32 (2015), 095005, 50pp. doi: 10.1088/0264-9381/32/9/095005.

[1]

Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113

[2]

Pedro Daniel Prieto-Martínez, Narciso Román-Roy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203-253. doi: 10.3934/jgm.2015.7.203

[3]

Olivier Brahic. Infinitesimal gauge symmetries of closed forms. Journal of Geometric Mechanics, 2011, 3 (3) : 277-312. doi: 10.3934/jgm.2011.3.277

[4]

Marco Castrillón López, Mark J. Gotay. Covariantizing classical field theories. Journal of Geometric Mechanics, 2011, 3 (4) : 487-506. doi: 10.3934/jgm.2011.3.487

[5]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[6]

Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596

[7]

Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1

[8]

Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397

[9]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[10]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[11]

Marco Castrillón López, Pedro Luis García Pérez. The problem of Lagrange on principal bundles under a subgroup of symmetries. Journal of Geometric Mechanics, 2019, 11 (4) : 539-552. doi: 10.3934/jgm.2019026

[12]

Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002

[13]

Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111

[14]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

[15]

Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453

[16]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167

[17]

Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Constraint algorithm for singular field theories in the k-cosymplectic framework. Journal of Geometric Mechanics, 2020, 12 (1) : 1-23. doi: 10.3934/jgm.2020002

[18]

M. S. Bruzón, M. L. Gandarias, J. C. Camacho. Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation. Conference Publications, 2015, 2015 (special) : 151-158. doi: 10.3934/proc.2015.0151

[19]

Benjamin Seibold, Rodolfo R. Rosales, Jean-Christophe Nave. Jet schemes for advection problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1229-1259. doi: 10.3934/dcdsb.2012.17.1229

[20]

Nurlan Dairbekov, Gunther Uhlmann. Reconstructing the metric and magnetic field from the scattering relation. Inverse Problems and Imaging, 2010, 4 (3) : 397-409. doi: 10.3934/ipi.2010.4.397

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (251)
  • HTML views (222)
  • Cited by (1)

Other articles
by authors

[Back to Top]