September  2019, 11(3): 427-438. doi: 10.3934/jgm.2019021

Relative periodic solutions of the $ n $-vortex problem on the sphere

Depto. Matemáticas y Mecánica IIMAS, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, México

Received  September 2018 Revised  April 2019 Published  August 2019

Fund Project: This project is supported by PAPIIT-UNAM grant IN115019.

This paper gives an analysis of the movement of $ n\ $vortices on the sphere. When the vortices have equal circulation, there is a polygonal solution that rotates uniformly around its center. The main result concerns the global existence of relative periodic solutions that emerge from this polygonal relative equilibrium. In addition, it is proved that the families of relative periodic solutions contain dense sets of choreographies.

Citation: Carlos García-Azpeitia. Relative periodic solutions of the $ n $-vortex problem on the sphere. Journal of Geometric Mechanics, 2019, 11 (3) : 427-438. doi: 10.3934/jgm.2019021
References:
[1]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences (AIMS), 2006.

[2]

T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics 1560. Springer-Verlag, 1993. doi: 10.1007/BFb0073859.

[3]

T. Bartsch and Q. Dai, Periodic solutions of the N-vortex Hamiltonian system in planar domains,, J. Differential Equations, 260 (2016), 2275-2295.  doi: 10.1016/j.jde.2015.10.002.

[4]

S. Boatto and H. Cabral, Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere,, SIAM J. Appl. Math., 64 (2003), 216-230.  doi: 10.1137/S0036139902399965.

[5]

V. A. Bogolmonov, Dynamics of vorticity at a sphere, Fluid. Dyn. (USSR), 6 (1977), 863-870. 

[6]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Absolute and relative choreographies in the problem of point vortices moving on a plane,, Regular and Chaotic Dynamics, 9 (2004), 101-111.  doi: 10.1070/RD2004v009n02ABEH000269.

[7]

A. V. Borisov, I. S. Mamaev and A. A. Kilin, New periodic solutions for three or four identical vortices on a plane and a sphere, Discrete and Continuous Dynamical Systems - Series B, 2005,110–120.

[8]

R. Calleja, E. Doedel and C. García-Azpeitia, Symmetries and choreographies in families bifurcating from the polygonal relative equilibrium of the n-body problem,, Celest. Mech. Dyn. Astr., 130 (2018), Art. 48, 28 pp. doi: 10.1007/s10569-018-9841-9.

[9]

R. CallejaE. Doedel and C. García-Azpeitia, Choreographies of the$n$-vortex problem,, Regular and Chaotic Dynamics, 23 (2018), 595-612.  doi: 10.1134/S156035471805009X.

[10]

A. C. Carvalho and H. E. Cabral, Lyapunov Orbits in the n-Vortex Problem,, Regular and Chaotic Dynamics, 19 (2014), 348-362.  doi: 10.1134/S156035471403006X.

[11]

A. Chenciner and J. Fejoz, Unchained polygons and the n-body problem,, Regular and chaotic dynamics, 14 (2009), 64-115.  doi: 10.1134/S1560354709010079.

[12]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math., 152 (2000), 881-901.  doi: 10.2307/2661357.

[13]

Q. DaiB. Gebhard and T. Bartsch, Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary,, SIAM Journal on Applied Mathematics, 78 (2018), 977-995.  doi: 10.1137/16M1107085.

[14]

F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Series in Dynamical Systems 1. Atlantis Press 2012. doi: 10.2991/978-94-91216-68-8.

[15]

C. García-Azpeitia and J. Ize, Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators,, J. Differential Equations, 251 (2011), 3202-3227.  doi: 10.1016/j.jde.2011.06.021.

[16]

C. García-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems,, J. Differential Equations, 252 (2012), 5662-5678.  doi: 10.1016/j.jde.2012.01.044.

[17]

C. García-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075. doi: 10.1016/j.jde.2012.08.022.

[18]

L. S. Gromeka, On Vortex Motions of Liquid on a Sphere, Collected Papers Moscow, AN USSR, 1952.

[19]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications 8. Walter de Gruyter, Berlin, 2003. doi: 10.1515/9783110200027.

[20]

F. Laurent-PolzJ. Montaldi and R. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, J. Geom. Mech., 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.

[21]

J. MontaldiR. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.

[22]

J. Montaldi and T. Tokieda, Deformation of geometry and bifurcations of vortex rings,, Recent Trends in Dynamical Systems, Springer Basel, 335 (2013), 335–370. doi: 10.1007/978-3-0348-0451-6_14.

[23]

C. Moore, Braids in classical gravity, Physical Review Letters, 70 (1993), 3675-3679.  doi: 10.1103/PhysRevLett.70.3675.

[24]

P. K. Newton, The N-vortex Problem, Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.

[25]

C. Simó, New families of solutions in N-body problems, European Congress of Mathematics, 101–115, Progr. Math., 201, Birkhäuser, Basel, 2001.

[26]

J. Vankerschaver and M. Leok, A novel formulation of point vortex dynamics on the sphere: Geometrical and numerical aspects,, Journal of Nonlinear Science, 24 (2013), 1-37.  doi: 10.1007/s00332-013-9182-5.

show all references

References:
[1]

Z. Balanov, W. Krawcewicz and H. Steinlein, Applied Equivariant Degree, AIMS Series on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences (AIMS), 2006.

[2]

T. Bartsch, Topological Methods for Variational Problems with Symmetries, Lecture Notes in Mathematics 1560. Springer-Verlag, 1993. doi: 10.1007/BFb0073859.

[3]

T. Bartsch and Q. Dai, Periodic solutions of the N-vortex Hamiltonian system in planar domains,, J. Differential Equations, 260 (2016), 2275-2295.  doi: 10.1016/j.jde.2015.10.002.

[4]

S. Boatto and H. Cabral, Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere,, SIAM J. Appl. Math., 64 (2003), 216-230.  doi: 10.1137/S0036139902399965.

[5]

V. A. Bogolmonov, Dynamics of vorticity at a sphere, Fluid. Dyn. (USSR), 6 (1977), 863-870. 

[6]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Absolute and relative choreographies in the problem of point vortices moving on a plane,, Regular and Chaotic Dynamics, 9 (2004), 101-111.  doi: 10.1070/RD2004v009n02ABEH000269.

[7]

A. V. Borisov, I. S. Mamaev and A. A. Kilin, New periodic solutions for three or four identical vortices on a plane and a sphere, Discrete and Continuous Dynamical Systems - Series B, 2005,110–120.

[8]

R. Calleja, E. Doedel and C. García-Azpeitia, Symmetries and choreographies in families bifurcating from the polygonal relative equilibrium of the n-body problem,, Celest. Mech. Dyn. Astr., 130 (2018), Art. 48, 28 pp. doi: 10.1007/s10569-018-9841-9.

[9]

R. CallejaE. Doedel and C. García-Azpeitia, Choreographies of the$n$-vortex problem,, Regular and Chaotic Dynamics, 23 (2018), 595-612.  doi: 10.1134/S156035471805009X.

[10]

A. C. Carvalho and H. E. Cabral, Lyapunov Orbits in the n-Vortex Problem,, Regular and Chaotic Dynamics, 19 (2014), 348-362.  doi: 10.1134/S156035471403006X.

[11]

A. Chenciner and J. Fejoz, Unchained polygons and the n-body problem,, Regular and chaotic dynamics, 14 (2009), 64-115.  doi: 10.1134/S1560354709010079.

[12]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math., 152 (2000), 881-901.  doi: 10.2307/2661357.

[13]

Q. DaiB. Gebhard and T. Bartsch, Periodic solutions of N-vortex type Hamiltonian systems near the domain boundary,, SIAM Journal on Applied Mathematics, 78 (2018), 977-995.  doi: 10.1137/16M1107085.

[14]

F. Diacu, Relative Equilibria of the Curved N-Body Problem, Atlantis Series in Dynamical Systems 1. Atlantis Press 2012. doi: 10.2991/978-94-91216-68-8.

[15]

C. García-Azpeitia and J. Ize, Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators,, J. Differential Equations, 251 (2011), 3202-3227.  doi: 10.1016/j.jde.2011.06.021.

[16]

C. García-Azpeitia and J. Ize, Bifurcation of periodic solutions from a ring configuration in the vortex and filament problems,, J. Differential Equations, 252 (2012), 5662-5678.  doi: 10.1016/j.jde.2012.01.044.

[17]

C. García-Azpeitia and J. Ize, Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem, J. Differential Equations, 254 (2013), 2033–2075. doi: 10.1016/j.jde.2012.08.022.

[18]

L. S. Gromeka, On Vortex Motions of Liquid on a Sphere, Collected Papers Moscow, AN USSR, 1952.

[19]

J. Ize and A. Vignoli, Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications 8. Walter de Gruyter, Berlin, 2003. doi: 10.1515/9783110200027.

[20]

F. Laurent-PolzJ. Montaldi and R. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, J. Geom. Mech., 3 (2011), 439-486.  doi: 10.3934/jgm.2011.3.439.

[21]

J. MontaldiR. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.

[22]

J. Montaldi and T. Tokieda, Deformation of geometry and bifurcations of vortex rings,, Recent Trends in Dynamical Systems, Springer Basel, 335 (2013), 335–370. doi: 10.1007/978-3-0348-0451-6_14.

[23]

C. Moore, Braids in classical gravity, Physical Review Letters, 70 (1993), 3675-3679.  doi: 10.1103/PhysRevLett.70.3675.

[24]

P. K. Newton, The N-vortex Problem, Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4684-9290-3.

[25]

C. Simó, New families of solutions in N-body problems, European Congress of Mathematics, 101–115, Progr. Math., 201, Birkhäuser, Basel, 2001.

[26]

J. Vankerschaver and M. Leok, A novel formulation of point vortex dynamics on the sphere: Geometrical and numerical aspects,, Journal of Nonlinear Science, 24 (2013), 1-37.  doi: 10.1007/s00332-013-9182-5.

[1]

P.K. Newton. N-vortex equilibrium theory. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 411-418. doi: 10.3934/dcds.2007.19.411

[2]

Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985

[3]

Björn Gebhard. Periodic solutions for the N-vortex problem via a superposition principle. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5443-5460. doi: 10.3934/dcds.2018240

[4]

P.K. Newton, M. Ruith, E. Upchurch. The constrained planar N-vortex problem: I. Integrability. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 137-152. doi: 10.3934/dcdsb.2005.5.137

[5]

Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983

[6]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[7]

Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387

[8]

J. F. Toland. Path-connectedness in global bifurcation theory. Electronic Research Archive, 2021, 29 (6) : 4199-4213. doi: 10.3934/era.2021079

[9]

Anna Lisa Amadori. Global bifurcation for the Hénon problem. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4797-4816. doi: 10.3934/cpaa.2020212

[10]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[11]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[12]

Kuo-Chih Hung, Shao-Yuan Huang, Shin-Hwa Wang. A global bifurcation theorem for a positone multiparameter problem and its application. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5127-5149. doi: 10.3934/dcds.2017222

[13]

C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267

[14]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[15]

Dan-Andrei Geba, Manoussos G. Grillakis. Large data global regularity for the classical equivariant Skyrme model. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5537-5576. doi: 10.3934/dcds.2018244

[16]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[17]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[18]

David Rojas, Pedro J. Torres. Bifurcation of relative equilibria generated by a circular vortex path in a circular domain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 749-760. doi: 10.3934/dcdsb.2019265

[19]

Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669

[20]

Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (195)
  • HTML views (198)
  • Cited by (1)

Other articles
by authors

[Back to Top]