This paper concerns an intrinsic formulation of nonholonomic mechanics. Our point of departure is the paper [6], by Koiller et al., revisiting E. Cartan's address at the International Congress of Mathematics held in 1928 at Bologna, Italy ([3]). Two notions of equivalence for nonholonomic mechanical systems $ ( {\mathsf{{M}}}, {{\mathsf{{g}}}}, {\mathscr{D}}) $ are introduced and studied. According to [6], the notions of equivalence considered in this paper coincide. A counterexample is presented here showing that this coincidence is not always true.
Citation: |
[1] |
A. Bakša, The geometrization of the motion of certain nonholonomic systems, Mat. Vesnik, 12 (1975), 233-240.
![]() ![]() |
[2] |
D. I. Barrett, R. Biggs, C. C. Remsing and O. Rossi, Invariant nonholonomic Riemannian structures on three-dimensional Lie groups, J. Geom. Mech., 8 (2016), 139-167.
doi: 10.3934/jgm.2016001.![]() ![]() ![]() |
[3] |
É. Cartan, Sur la represéntation géométrique des systmes matériels non holonomes, in Proc Int Congr Math, 4, Bologna, 1928, 253–261.
![]() |
[4] |
V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics, Regul. Chaotic Dyn., 8 (2003), 105-123.
doi: 10.1070/RD2003v008n01ABEH000229.![]() ![]() ![]() |
[5] |
K. Ehlers and J. Koiller, Cartan meets Chaplygin, Theoretical and Applied Mechanics, 46 (2019), 15-46.
doi: 10.2298/TAM190116006E.![]() ![]() |
[6] |
J. Koiller, P. R. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan, Anais da Academia Brasileira de Cincias, 73 (2001), 165–190, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200003&nrm=iso.
doi: 10.1590/S0001-37652001000200003.![]() ![]() ![]() |
[7] |
W. M. Oliva, Geometric Mechanics, vol. 1798 of Lecture Notes in Mathematics, Springer-Verlag, 2002.
doi: 10.1007/b84214.![]() ![]() ![]() |
[8] |
J. N. Tavares, About Cartan geometrization of non-holonomic mechanics, J. Geom. Phys., 45 (2003), 1-23.
doi: 10.1016/S0393-0440(02)00118-3.![]() ![]() ![]() |
[9] |
G. Terra, The parallel derivative, Revista Matemática Contemporânea, 29 (2005), 157-170.
![]() ![]() |