September  2019, 11(3): 439-446. doi: 10.3934/jgm.2019022

Improving E. Cartan considerations on the invariance of nonholonomic mechanics

1. 

Universidade de Lisboa, Instituto Superior Técnico, Center for Mathematical Analysis, Geometry and Dynamical Systems, Av. Rovisco Pais, 1049-001 Lisbon, Portugal

2. 

Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Matemática Aplicada, Rua do Matão, 1010, 05508-090 São Paulo, Brazil

3. 

Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Matemática, Rua do Matão, 1010, 05508-090 São Paulo, Brazil

Received  February 2019 Published  August 2019

This paper concerns an intrinsic formulation of nonholonomic mechanics. Our point of departure is the paper [6], by Koiller et al., revisiting E. Cartan's address at the International Congress of Mathematics held in 1928 at Bologna, Italy ([3]). Two notions of equivalence for nonholonomic mechanical systems $ ( {\mathsf{{M}}}, {{\mathsf{{g}}}}, {\mathscr{D}}) $ are introduced and studied. According to [6], the notions of equivalence considered in this paper coincide. A counterexample is presented here showing that this coincidence is not always true.

Citation: Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022
References:
[1]

A. Bakša, The geometrization of the motion of certain nonholonomic systems, Mat. Vesnik, 12 (1975), 233-240.   Google Scholar

[2]

D. I. BarrettR. BiggsC. C. Remsing and O. Rossi, Invariant nonholonomic Riemannian structures on three-dimensional Lie groups, J. Geom. Mech., 8 (2016), 139-167.  doi: 10.3934/jgm.2016001.  Google Scholar

[3]

É. Cartan, Sur la represéntation géométrique des systmes matériels non holonomes, in Proc Int Congr Math, 4, Bologna, 1928, 253–261. Google Scholar

[4]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics, Regul. Chaotic Dyn., 8 (2003), 105-123.  doi: 10.1070/RD2003v008n01ABEH000229.  Google Scholar

[5]

K. Ehlers and J. Koiller, Cartan meets Chaplygin, Theoretical and Applied Mechanics, 46 (2019), 15-46.  doi: 10.2298/TAM190116006E.  Google Scholar

[6]

J. Koiller, P. R. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan, Anais da Academia Brasileira de Cincias, 73 (2001), 165–190, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200003&nrm=iso. doi: 10.1590/S0001-37652001000200003.  Google Scholar

[7]

W. M. Oliva, Geometric Mechanics, vol. 1798 of Lecture Notes in Mathematics, Springer-Verlag, 2002. doi: 10.1007/b84214.  Google Scholar

[8]

J. N. Tavares, About Cartan geometrization of non-holonomic mechanics, J. Geom. Phys., 45 (2003), 1-23.  doi: 10.1016/S0393-0440(02)00118-3.  Google Scholar

[9]

G. Terra, The parallel derivative, Revista Matemática Contemporânea, 29 (2005), 157-170.   Google Scholar

show all references

References:
[1]

A. Bakša, The geometrization of the motion of certain nonholonomic systems, Mat. Vesnik, 12 (1975), 233-240.   Google Scholar

[2]

D. I. BarrettR. BiggsC. C. Remsing and O. Rossi, Invariant nonholonomic Riemannian structures on three-dimensional Lie groups, J. Geom. Mech., 8 (2016), 139-167.  doi: 10.3934/jgm.2016001.  Google Scholar

[3]

É. Cartan, Sur la represéntation géométrique des systmes matériels non holonomes, in Proc Int Congr Math, 4, Bologna, 1928, 253–261. Google Scholar

[4]

V. Dragović and B. Gajić, The Wagner curvature tensor in nonholonomic mechanics, Regul. Chaotic Dyn., 8 (2003), 105-123.  doi: 10.1070/RD2003v008n01ABEH000229.  Google Scholar

[5]

K. Ehlers and J. Koiller, Cartan meets Chaplygin, Theoretical and Applied Mechanics, 46 (2019), 15-46.  doi: 10.2298/TAM190116006E.  Google Scholar

[6]

J. Koiller, P. R. Rodrigues and P. Pitanga, Non-holonomic connections following Élie Cartan, Anais da Academia Brasileira de Cincias, 73 (2001), 165–190, http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652001000200003&nrm=iso. doi: 10.1590/S0001-37652001000200003.  Google Scholar

[7]

W. M. Oliva, Geometric Mechanics, vol. 1798 of Lecture Notes in Mathematics, Springer-Verlag, 2002. doi: 10.1007/b84214.  Google Scholar

[8]

J. N. Tavares, About Cartan geometrization of non-holonomic mechanics, J. Geom. Phys., 45 (2003), 1-23.  doi: 10.1016/S0393-0440(02)00118-3.  Google Scholar

[9]

G. Terra, The parallel derivative, Revista Matemática Contemporânea, 29 (2005), 157-170.   Google Scholar

[1]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[2]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[3]

Zemer Kosloff, Terry Soo. The orbital equivalence of Bernoulli actions and their Sinai factors. Journal of Modern Dynamics, 2021, 17: 145-182. doi: 10.3934/jmd.2021005

[4]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[5]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[6]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[7]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[8]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[9]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[10]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[11]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[12]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[13]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[14]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[15]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[16]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[17]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[18]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[19]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[20]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (178)
  • HTML views (217)
  • Cited by (0)

Other articles
by authors

[Back to Top]