-
Previous Article
Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers
- JGM Home
- This Issue
-
Next Article
Variational integrators for anelastic and pseudo-incompressible flows
The problem of Lagrange on principal bundles under a subgroup of symmetries
1. | Dept. Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain |
2. | Dept. Matemática, Universidad de Salamanca, 37008 Salamanca, Spain and Real Academia de Ciencias, 28004 Madrid, Spain |
Given a Lagrangian density $ L{\bf{v}} $ defined on the $ 1 $-jet extension $ J^1P $ of a principal $ G $-bundle $ \pi \colon P\to M $ invariant under the action of a closed subgroup $ H\subset G $, its Euler-Poincaré reduction in $ J^1P/H = C(P)\times_M P/H $ ($ C(P)\to M $ being the bundle of connections of $ P $ and $ P/H\to M $ being the bundle of $ H $-structures) induces a Lagrange problem defined in $ J^1(C(P)\times_M P/H) $ by a reduced Lagrangian density $ l{\bf{v}} $ together with the constraints $ {\rm{Curv}}\sigma = 0, \nabla ^\sigma \bar{s} = 0 $, for $ \sigma $ and $ \bar{s} $ sections of $ C(P) $ and $ P/H $ respectively. We prove that the critical section of this problem are solutions of the Euler-Poincaré equations of the reduced problem. We also study the Hamilton-Cartan formulation of this Lagrange problem, where we find some common points with Pontryagin's approach to optimal control problems for $ \sigma $ as control variables and $ \bar{s} $ as dynamical variables. Finally, the theory is illustrated with the case of affine principal fiber bundles and its application to the modelisation of the molecular strands on a Lorentzian plane.
References:
[1] |
E. Bibbona, L. Fatibene and M. Francaviglia, Chetaev versus vakonomic prescriptions in constrained field theories with parametrized variational calculus, J. Math. Phys., 48 (2007), 032903, 14 pp.
doi: 10.1063/1.2709848. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[3] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal fiber bundles and the problem of Lagrange, Diff. Geom. Appl., 25 (2007), 585-593.
doi: 10.1016/j.difgeo.2007.06.007. |
[4] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys, 74 (2013), 352-369.
doi: 10.1016/j.geomphys.2013.08.008. |
[5] |
M. Castrillón and P. L. García,
Euler-Poincaré reduction by a subgroup of the symmetries as an optimal control problem, Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proc. Math. Stat., Springer, [Cham], 161 (2016), 49-63.
doi: 10.1007/978-3-319-32085-4_5. |
[6] |
D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu,
Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.
doi: 10.1007/s00205-010-0305-y. |
[7] |
P. L. García,
The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., Academic Press, London, 14 (1974), 219-249.
|
[8] |
P. L. García, Sobre la Regularidad en los Problemas de Lagrange y de Control Óptimo, El legado matemático de Juan Bautista Sancho Guimerá, Ediciones de la Universidad de Salamanca, 2015, 51–74. ISBN 978-84-9012-574-8. Google Scholar |
[9] |
P. L. García, A. García and C. Rodrigo,
Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610.
doi: 10.1016/j.geomphys.2005.04.002. |
[10] |
J.-L. Koszul, Lectures on Fibers Bundles and Differential Geometry, Lect. in Math. No. 20, Tata Institute of Fundamental Research, Bombay, 1965. |
show all references
References:
[1] |
E. Bibbona, L. Fatibene and M. Francaviglia, Chetaev versus vakonomic prescriptions in constrained field theories with parametrized variational calculus, J. Math. Phys., 48 (2007), 032903, 14 pp.
doi: 10.1063/1.2709848. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[3] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal fiber bundles and the problem of Lagrange, Diff. Geom. Appl., 25 (2007), 585-593.
doi: 10.1016/j.difgeo.2007.06.007. |
[4] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys, 74 (2013), 352-369.
doi: 10.1016/j.geomphys.2013.08.008. |
[5] |
M. Castrillón and P. L. García,
Euler-Poincaré reduction by a subgroup of the symmetries as an optimal control problem, Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proc. Math. Stat., Springer, [Cham], 161 (2016), 49-63.
doi: 10.1007/978-3-319-32085-4_5. |
[6] |
D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu,
Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.
doi: 10.1007/s00205-010-0305-y. |
[7] |
P. L. García,
The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., Academic Press, London, 14 (1974), 219-249.
|
[8] |
P. L. García, Sobre la Regularidad en los Problemas de Lagrange y de Control Óptimo, El legado matemático de Juan Bautista Sancho Guimerá, Ediciones de la Universidad de Salamanca, 2015, 51–74. ISBN 978-84-9012-574-8. Google Scholar |
[9] |
P. L. García, A. García and C. Rodrigo,
Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610.
doi: 10.1016/j.geomphys.2005.04.002. |
[10] |
J.-L. Koszul, Lectures on Fibers Bundles and Differential Geometry, Lect. in Math. No. 20, Tata Institute of Fundamental Research, Bombay, 1965. |
[1] |
Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39. |
[2] |
Alvaro Sandroni, Eran Shmaya. A prequential test for exchangeable theories. Journal of Dynamics & Games, 2014, 1 (3) : 497-505. doi: 10.3934/jdg.2014.1.497 |
[3] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[4] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[5] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[6] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[7] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[8] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[9] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[10] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[11] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]