-
Previous Article
Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers
- JGM Home
- This Issue
-
Next Article
Variational integrators for anelastic and pseudo-incompressible flows
The problem of Lagrange on principal bundles under a subgroup of symmetries
1. | Dept. Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain |
2. | Dept. Matemática, Universidad de Salamanca, 37008 Salamanca, Spain and Real Academia de Ciencias, 28004 Madrid, Spain |
Given a Lagrangian density $ L{\bf{v}} $ defined on the $ 1 $-jet extension $ J^1P $ of a principal $ G $-bundle $ \pi \colon P\to M $ invariant under the action of a closed subgroup $ H\subset G $, its Euler-Poincaré reduction in $ J^1P/H = C(P)\times_M P/H $ ($ C(P)\to M $ being the bundle of connections of $ P $ and $ P/H\to M $ being the bundle of $ H $-structures) induces a Lagrange problem defined in $ J^1(C(P)\times_M P/H) $ by a reduced Lagrangian density $ l{\bf{v}} $ together with the constraints $ {\rm{Curv}}\sigma = 0, \nabla ^\sigma \bar{s} = 0 $, for $ \sigma $ and $ \bar{s} $ sections of $ C(P) $ and $ P/H $ respectively. We prove that the critical section of this problem are solutions of the Euler-Poincaré equations of the reduced problem. We also study the Hamilton-Cartan formulation of this Lagrange problem, where we find some common points with Pontryagin's approach to optimal control problems for $ \sigma $ as control variables and $ \bar{s} $ as dynamical variables. Finally, the theory is illustrated with the case of affine principal fiber bundles and its application to the modelisation of the molecular strands on a Lorentzian plane.
References:
[1] |
E. Bibbona, L. Fatibene and M. Francaviglia, Chetaev versus vakonomic prescriptions in constrained field theories with parametrized variational calculus, J. Math. Phys., 48 (2007), 032903, 14 pp.
doi: 10.1063/1.2709848. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[3] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal fiber bundles and the problem of Lagrange, Diff. Geom. Appl., 25 (2007), 585-593.
doi: 10.1016/j.difgeo.2007.06.007. |
[4] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys, 74 (2013), 352-369.
doi: 10.1016/j.geomphys.2013.08.008. |
[5] |
M. Castrillón and P. L. García,
Euler-Poincaré reduction by a subgroup of the symmetries as an optimal control problem, Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proc. Math. Stat., Springer, [Cham], 161 (2016), 49-63.
doi: 10.1007/978-3-319-32085-4_5. |
[6] |
D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu,
Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.
doi: 10.1007/s00205-010-0305-y. |
[7] |
P. L. García,
The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., Academic Press, London, 14 (1974), 219-249.
|
[8] |
P. L. García, Sobre la Regularidad en los Problemas de Lagrange y de Control Óptimo, El legado matemático de Juan Bautista Sancho Guimerá, Ediciones de la Universidad de Salamanca, 2015, 51–74. ISBN 978-84-9012-574-8. |
[9] |
P. L. García, A. García and C. Rodrigo,
Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610.
doi: 10.1016/j.geomphys.2005.04.002. |
[10] |
J.-L. Koszul, Lectures on Fibers Bundles and Differential Geometry, Lect. in Math. No. 20, Tata Institute of Fundamental Research, Bombay, 1965. |
show all references
We dedicate this work to our friend Darryl D. Holm on the occasion of his 70th birthday.
References:
[1] |
E. Bibbona, L. Fatibene and M. Francaviglia, Chetaev versus vakonomic prescriptions in constrained field theories with parametrized variational calculus, J. Math. Phys., 48 (2007), 032903, 14 pp.
doi: 10.1063/1.2709848. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24. Systems and Control. Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[3] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal fiber bundles and the problem of Lagrange, Diff. Geom. Appl., 25 (2007), 585-593.
doi: 10.1016/j.difgeo.2007.06.007. |
[4] |
M. Castrillón, P. L. García and C. Rodrigo,
Euler-Poincaré reduction in principal bundles by a subgroup of the structure group, J. Geom. Phys, 74 (2013), 352-369.
doi: 10.1016/j.geomphys.2013.08.008. |
[5] |
M. Castrillón and P. L. García,
Euler-Poincaré reduction by a subgroup of the symmetries as an optimal control problem, Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proc. Math. Stat., Springer, [Cham], 161 (2016), 49-63.
doi: 10.1007/978-3-319-32085-4_5. |
[6] |
D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu,
Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., 197 (2010), 811-902.
doi: 10.1007/s00205-010-0305-y. |
[7] |
P. L. García,
The Poincaré-Cartan invariant in the calculus of variations, Symp. Math., Academic Press, London, 14 (1974), 219-249.
|
[8] |
P. L. García, Sobre la Regularidad en los Problemas de Lagrange y de Control Óptimo, El legado matemático de Juan Bautista Sancho Guimerá, Ediciones de la Universidad de Salamanca, 2015, 51–74. ISBN 978-84-9012-574-8. |
[9] |
P. L. García, A. García and C. Rodrigo,
Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610.
doi: 10.1016/j.geomphys.2005.04.002. |
[10] |
J.-L. Koszul, Lectures on Fibers Bundles and Differential Geometry, Lect. in Math. No. 20, Tata Institute of Fundamental Research, Bombay, 1965. |
[1] |
Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399 |
[2] |
Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237 |
[3] |
Karla L. Cortez, Javier F. Rosenblueth. Normality and uniqueness of Lagrange multipliers. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3169-3188. doi: 10.3934/dcds.2018138 |
[4] |
Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004 |
[5] |
V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44. |
[6] |
Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49 |
[7] |
Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 |
[8] |
Marco Castrillón López, Mark J. Gotay. Covariantizing classical field theories. Journal of Geometric Mechanics, 2011, 3 (4) : 487-506. doi: 10.3934/jgm.2011.3.487 |
[9] |
Tao Jie, Gao Yan. Computing shadow prices with multiple Lagrange multipliers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2307-2329. doi: 10.3934/jimo.2020070 |
[10] |
Javier Fernández, Marcela Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 433-444. doi: 10.3934/jgm.2013.5.433 |
[11] |
Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002 |
[12] |
Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343 |
[13] |
J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81 |
[14] |
Chjan C. Lim, Da Zhu. Variational analysis of energy-enstrophy theories on the sphere. Conference Publications, 2005, 2005 (Special) : 611-620. doi: 10.3934/proc.2005.2005.611 |
[15] |
Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596 |
[16] |
Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577 |
[17] |
Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449 |
[18] |
Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167 |
[19] |
Artur M. C. Brito da Cruz, Natália Martins, Delfim F. M. Torres. Hahn's symmetric quantum variational calculus. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 77-94. doi: 10.3934/naco.2013.3.77 |
[20] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]