
-
Previous Article
Global well-posedness of a 3D MHD model in porous media
- JGM Home
- This Issue
-
Next Article
Non-Abelian momentum polytopes for products of $ \mathbb{CP}^2 $
Generalized point vortex dynamics on $ \mathbb{CP} ^2 $
Dept of Mathematics, University of Manchester, Manchester M13 9PL, UK |
This is the second of two companion papers. We describe a generalization of the point vortex system on surfaces to a Hamiltonian dynamical system consisting of two or three points on complex projective space $ \mathbb{CP} ^2 $ interacting via a Hamiltonian function depending only on the distance between the points. The system has symmetry group SU(3). The first paper describes all possible momentum values for such systems, and here we apply methods of symplectic reduction and geometric mechanics to analyze the possible relative equilibria of such interacting generalized vortices.
The different types of polytope depend on the values of the 'vortex strengths', which are manifested as coefficients of the symplectic forms on the copies of $ \mathbb{CP} ^2 $. We show that the reduced space for this Hamiltonian action for 3 vortices is generically a 2-sphere, and proceed to describe the reduced dynamics under simple hypotheses on the type of Hamiltonian interaction. The other non-trivial reduced spaces are topological spheres with isolated singular points. For 2 generalized vortices, the reduced spaces are just points, and the motion is governed by a collective Hamiltonian, whereas for 3 the reduced spaces are of dimension at most 2. In both cases the system will be completely integrable in the non-abelian sense.
References:
[1] |
H. Aref, Point vortex dynamics: A classical mathematics playground, J. Math. Phys., 48 (2007), 065401, 23 pp.
doi: 10.1063/1.2425103. |
[2] |
H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. in Appl. Mech., 39 (2003), 1-79. Google Scholar |
[3] |
S. Boatto and J. Koiller,
Vortices on closed surfaces, Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Inst. Commun., Springer, 73 (2015), 185-237.
doi: 10.1007/978-1-4939-2441-7_10. |
[4] |
A. V. Bolsinov, A. V. Borisov and I. S. Mamaev,
Lie algebras in vortex dynamics and celestial mechanics. IV, Regular and Chaotic Dynamics, 4 (1999), 23-50.
doi: 10.1070/rd1999v004n01ABEH000097. |
[5] |
P.-L. Buono, F. Laurent-Polz and J. Montaldi,
Symmetric Hamiltonian bifurcations, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 357-402.
doi: 10.1017/CBO9780511526367.007. |
[6] |
D. G. Dritschel and S. Boatto, The motion of point vortices on closed surfaces, Proc. R. Soc. A, 471 (2015), 20140890, 25 pp, http://dx.doi.org/10.1098/rspa.2014.0890.
doi: 10.1098/rspa.2014.0890. |
[7] |
J. J. Duistermaat and G. J. Heckman,
On the variation in the cohomology of the sympleetic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.
doi: 10.1007/BF01399506. |
[8] |
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.
![]() |
[9] |
V. Guillemin and S. Sternberg,
Birational equivalence in the symplectic category, Invent. Math., 97 (1989), 485-522.
doi: 10.1007/BF01388888. |
[10] |
R. Kidambi and P. K. Newton,
Motion of three point vortices on a sphere, Physica D, 116 (1998), 143-175.
doi: 10.1016/S0167-2789(97)00236-4. |
[11] |
F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, 31. Princeton University Press, Princeton, NJ, 1984.
doi: 10.1007/BF01145470.![]() ![]() |
[12] |
F. C. Kirwan,
The topology of reduced phase spaces of the motion of vortices on a sphere, Phy. D, 30 (1988), 99-123.
doi: 10.1016/0167-2789(88)90100-5. |
[13] |
F. Laurent-Polz, J. Montaldi and M. Roberts,
Point vortices on the sphere: Stability of symmetric relative equilibria, J. Geom. Mech., 3 (2011), 439-486.
doi: 10.3934/jgm.2011.3.439. |
[14] |
C. C. Lim, Existence of Kolmogorov-Arnold-Moser tori in the phase-space of lattice vortex systems, Z. Angew. Math. Phys., 41 (1990), 227-244. Google Scholar |
[15] |
C. Lim, J. Montaldi and M. Roberts,
Relative equilibria of point vortices on the sphere, Phys. D., 148 (2001), 97-135.
doi: 10.1016/S0167-2789(00)00167-6. |
[16] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6. |
[17] |
J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N.J. 1963. |
[18] |
J. Montaldi,
Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.
doi: 10.1088/0951-7715/10/2/009. |
[19] |
J. Montaldi, Relative equilibria and conserved quantities in symmetric Hamiltonian systems, Peyresq Lectures on Nonlinear Phenomena, World Sci. Publ., River Edge, NJ, (2000), 239–280.
doi: 10.1142/9789812792778_0008. |
[20] |
J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Math. Phys., 55 (2014), 102702, 14 pp, http://dx.doi.org/10.1063/1.4897210.
doi: 10.1063/1.4897210. |
[21] |
J. Montaldi and M. Roberts, Stratification of the momentum map, in preparation. Google Scholar |
[22] |
J. Montaldi, A. Soulière and T. Tokieda,
Vortex dynamics on cylinders, SIAM J. on Appl. Dyn. Sys., 2 (2003), 417-430.
doi: 10.1137/S1111111102415569. |
[23] |
J. Montaldi and A. Shaddad, Non-Abelian momentum polytopes for products of $\mathbb{CP}^2$, J. Geom. Mechanics, (this volume). Google Scholar |
[24] |
J. Montaldi and T. Tokieda,
Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.
doi: 10.1016/S0040-9383(02)00047-2. |
[25] |
P. K. Newton, The $N$-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3. |
[26] |
J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222. Birkhäuser Boston, Inc., Boston, MA, 2004.
doi: 10.1007/978-1-4757-3811-7. |
[27] |
S. Pekarsky and J. E. Marsden,
Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39 (1998), 5894-5907.
doi: 10.1063/1.532602. |
[28] |
A. R. Rodrigues, C. Castilho and J. Koiller,
Vortex dynamics on a triaxial ellipsoid and Kimura's conjecture, J. Geom. Mech., 10 (2018), 189-208.
doi: 10.3934/jgm.2018007. |
[29] |
T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, k Proc. R. Soc. A, 472 (2016), 20160271, 24 pp, http://dx.doi.org/10.1098/rspa.2016.0271.
doi: 10.1098/rspa.2016.0271. |
[30] |
A. Shaddad, The Classification and Dynamics of the Momentum Polytopes of the SU(3) Action on Points in the Complex Projective Plane with an Application to Point Vortices, Ph.D. thesis, University of Manchester, 2018. Google Scholar |
[31] |
R. Sjamaar,
Convexity properties of the moment mapping re-examined, Advances in Math., 138 (1998), 46-91.
doi: 10.1006/aima.1998.1739. |
show all references
References:
[1] |
H. Aref, Point vortex dynamics: A classical mathematics playground, J. Math. Phys., 48 (2007), 065401, 23 pp.
doi: 10.1063/1.2425103. |
[2] |
H. Aref, P. K. Newton, M. A. Stremler, T. Tokieda and D. L. Vainchtein, Vortex crystals, Adv. in Appl. Mech., 39 (2003), 1-79. Google Scholar |
[3] |
S. Boatto and J. Koiller,
Vortices on closed surfaces, Geometry, Mechanics and Dynamics: The Legacy of Jerry Marsden, Fields Inst. Commun., Springer, 73 (2015), 185-237.
doi: 10.1007/978-1-4939-2441-7_10. |
[4] |
A. V. Bolsinov, A. V. Borisov and I. S. Mamaev,
Lie algebras in vortex dynamics and celestial mechanics. IV, Regular and Chaotic Dynamics, 4 (1999), 23-50.
doi: 10.1070/rd1999v004n01ABEH000097. |
[5] |
P.-L. Buono, F. Laurent-Polz and J. Montaldi,
Symmetric Hamiltonian bifurcations, London Math. Soc. Lecture Note Ser., Geometric mechanics and symmetry, Cambridge Univ. Press, Cambridge, 306 (2005), 357-402.
doi: 10.1017/CBO9780511526367.007. |
[6] |
D. G. Dritschel and S. Boatto, The motion of point vortices on closed surfaces, Proc. R. Soc. A, 471 (2015), 20140890, 25 pp, http://dx.doi.org/10.1098/rspa.2014.0890.
doi: 10.1098/rspa.2014.0890. |
[7] |
J. J. Duistermaat and G. J. Heckman,
On the variation in the cohomology of the sympleetic form of the reduced phase space, Invent. Math., 69 (1982), 259-268.
doi: 10.1007/BF01399506. |
[8] |
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.
![]() |
[9] |
V. Guillemin and S. Sternberg,
Birational equivalence in the symplectic category, Invent. Math., 97 (1989), 485-522.
doi: 10.1007/BF01388888. |
[10] |
R. Kidambi and P. K. Newton,
Motion of three point vortices on a sphere, Physica D, 116 (1998), 143-175.
doi: 10.1016/S0167-2789(97)00236-4. |
[11] |
F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, 31. Princeton University Press, Princeton, NJ, 1984.
doi: 10.1007/BF01145470.![]() ![]() |
[12] |
F. C. Kirwan,
The topology of reduced phase spaces of the motion of vortices on a sphere, Phy. D, 30 (1988), 99-123.
doi: 10.1016/0167-2789(88)90100-5. |
[13] |
F. Laurent-Polz, J. Montaldi and M. Roberts,
Point vortices on the sphere: Stability of symmetric relative equilibria, J. Geom. Mech., 3 (2011), 439-486.
doi: 10.3934/jgm.2011.3.439. |
[14] |
C. C. Lim, Existence of Kolmogorov-Arnold-Moser tori in the phase-space of lattice vortex systems, Z. Angew. Math. Phys., 41 (1990), 227-244. Google Scholar |
[15] |
C. Lim, J. Montaldi and M. Roberts,
Relative equilibria of point vortices on the sphere, Phys. D., 148 (2001), 97-135.
doi: 10.1016/S0167-2789(00)00167-6. |
[16] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4612-2682-6. |
[17] |
J. Milnor, Morse Theory, Annals of Mathematics Studies, No. 51 Princeton University Press, Princeton, N.J. 1963. |
[18] |
J. Montaldi,
Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.
doi: 10.1088/0951-7715/10/2/009. |
[19] |
J. Montaldi, Relative equilibria and conserved quantities in symmetric Hamiltonian systems, Peyresq Lectures on Nonlinear Phenomena, World Sci. Publ., River Edge, NJ, (2000), 239–280.
doi: 10.1142/9789812792778_0008. |
[20] |
J. Montaldi and C. Nava-Gaxiola, Point vortices on the hyperbolic plane, J. Math. Phys., 55 (2014), 102702, 14 pp, http://dx.doi.org/10.1063/1.4897210.
doi: 10.1063/1.4897210. |
[21] |
J. Montaldi and M. Roberts, Stratification of the momentum map, in preparation. Google Scholar |
[22] |
J. Montaldi, A. Soulière and T. Tokieda,
Vortex dynamics on cylinders, SIAM J. on Appl. Dyn. Sys., 2 (2003), 417-430.
doi: 10.1137/S1111111102415569. |
[23] |
J. Montaldi and A. Shaddad, Non-Abelian momentum polytopes for products of $\mathbb{CP}^2$, J. Geom. Mechanics, (this volume). Google Scholar |
[24] |
J. Montaldi and T. Tokieda,
Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.
doi: 10.1016/S0040-9383(02)00047-2. |
[25] |
P. K. Newton, The $N$-Vortex Problem: Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3. |
[26] |
J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222. Birkhäuser Boston, Inc., Boston, MA, 2004.
doi: 10.1007/978-1-4757-3811-7. |
[27] |
S. Pekarsky and J. E. Marsden,
Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39 (1998), 5894-5907.
doi: 10.1063/1.532602. |
[28] |
A. R. Rodrigues, C. Castilho and J. Koiller,
Vortex dynamics on a triaxial ellipsoid and Kimura's conjecture, J. Geom. Mech., 10 (2018), 189-208.
doi: 10.3934/jgm.2018007. |
[29] |
T. Sakajo and Y. Shimizu, Point vortex interactions on a toroidal surface, k Proc. R. Soc. A, 472 (2016), 20160271, 24 pp, http://dx.doi.org/10.1098/rspa.2016.0271.
doi: 10.1098/rspa.2016.0271. |
[30] |
A. Shaddad, The Classification and Dynamics of the Momentum Polytopes of the SU(3) Action on Points in the Complex Projective Plane with an Application to Point Vortices, Ph.D. thesis, University of Manchester, 2018. Google Scholar |
[31] |
R. Sjamaar,
Convexity properties of the moment mapping re-examined, Advances in Math., 138 (1998), 46-91.
doi: 10.1006/aima.1998.1739. |



equal: |
||
orthogonal: |
||
generic: |
||
equal: |
||
orthogonal: |
||
generic: |
||
Otherwise | equal: |
|
orthogonal: |
||
generic: |
equal: |
||
orthogonal: |
||
generic: |
||
equal: |
||
orthogonal: |
||
generic: |
||
Otherwise | equal: |
|
orthogonal: |
||
generic: |
triple point | ||
other vertices | ||
generic | ||
$\mu\not\in$ Wall: $G_\mu=\mathbb{T}^2$ | ||
double point | $G_x=U(1)$ | $R_0\simeq(\tt^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$ |
double+orthogonal | $G_x=\mathbb{T}^2$ | $R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$ |
distinct coplanar | $G_x=U(1)$ | $R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$ |
totally orthogonal | $G_x=\mathbb{T}^2$ | $R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$ |
semi-orthogonal | $G_x=U(1)$ | $R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$ |
generic | $G_x=\bf{1}$ | $R_0\simeq\mathfrak{t}^2=\mathbb{R}^2$ |
triple point | ||
other vertices | ||
generic | ||
$\mu\not\in$ Wall: $G_\mu=\mathbb{T}^2$ | ||
double point | $G_x=U(1)$ | $R_0\simeq(\tt^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$ |
double+orthogonal | $G_x=\mathbb{T}^2$ | $R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$ |
distinct coplanar | $G_x=U(1)$ | $R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$ |
totally orthogonal | $G_x=\mathbb{T}^2$ | $R_0\simeq(\mathfrak{t}^2/\tt^2)^{\mathbb{T}^2}=\{0\}$ |
semi-orthogonal | $G_x=U(1)$ | $R_0\simeq(\mathfrak{t}^2/\mathfrak{u}(1))^{U(1)}=\mathbb{R}$ |
generic | $G_x=\bf{1}$ | $R_0\simeq\mathfrak{t}^2=\mathbb{R}^2$ |
[1] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[2] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[3] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[4] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[5] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[6] |
V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511 |
[7] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[10] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[11] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[12] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[13] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[14] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[15] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[16] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[17] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[18] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[19] |
F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605 |
[20] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]