December  2019, 11(4): 621-637. doi: 10.3934/jgm.2019031

Global well-posedness of a 3D MHD model in porous media

1. 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

2. 

Department of Mathematics, Texas A & M University College Station, 3368 TAMU, College Station, TX 77843-3368, USA

3. 

Department of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, KSA

* Corresponding author

This work is dedicated to Professor Darryl Holm on the occasion of his 70th birthday

Received  May 2018 Revised  March 2019 Published  November 2019

In this paper we show the global well-posedness of solutions to a three-dimensional magnetohydrodynamical (MHD) model in porous media. Compared to the classical MHD equations, our system involves a nonlinear damping term in the momentum equations due to the "Brinkman-Forcheimer-extended-Darcy" law of flow in porous media.

Citation: Edriss S. Titi, Saber Trabelsi. Global well-posedness of a 3D MHD model in porous media. Journal of Geometric Mechanics, 2019, 11 (4) : 621-637. doi: 10.3934/jgm.2019031
References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, RI, 2010. doi: 10.1090/chel/369.

[2]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.

[3]

J. W. Barrett and W. B. Liu, Finite element approximation of the parabolic $p$-laplacian, SIAM Journal on Numerical Analysis, 31 (1994), 413-428.  doi: 10.1137/0731022.

[4]

H. BessaihS. Trabelsi and H. Zorgati, Existence and uniqueness of global solutions for the modified anisotropic 3D Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1817-1823.  doi: 10.1051/m2an/2016008.

[5]

X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, Journal of Mathematical Analysis and Applications, 343 (2008), 799-809.  doi: 10.1016/j.jmaa.2008.01.041.

[6]

C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations, Journal of Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.

[7]

A. O. ÇelebiV. Kalantarov and D. U$\widetilde {\rm{g}}$gurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Applicable Analysis, 84 (2005), 877-888.  doi: 10.1080/00036810500148911.

[8]

A. O. ÇelebiV. K. Kalantarov and D. Uǧurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Applied mathematics letters, 19 (2006), 801-807.  doi: 10.1016/j.aml.2005.11.002.

[9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. 
[10]

J. É. J. Dupuit, Études Théoriques et Pratiques sur le Mouvement des eaux dans les Canaux Découverts et à Travers les Terrains Perméables: avec des Considérations Relatives au Régime des Grandes eaux, au Débouché à leur Donner, et à la Marche des Alluvions dans les Rivières à Fond Mobile, Dunod, 1863.

[11]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[12]

P. Forchheimer, Wasserbewegung durch boden, Zeitz. Ver. Duetch Ing., 45 (1901), 1782-1788. 

[13]

M. FourarG. RadillaR. Lenormand and C. Moyne, On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media, Advances in Water Resources, 27 (2004), 669-677. 

[14]

C. He and Z. P. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, Journal of Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.

[15]

C. He and Z. P. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, Journal of Functional Analysis, 227 (2005), 113-152.  doi: 10.1016/j.jfa.2005.06.009.

[16]

C. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597. 

[17]

V. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Communications on Pure and Applied Analysis, 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.

[18]

K. Kang and J. Lee, Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations, Journal of Differential Equations, 247 (2009), 2310-2330.  doi: 10.1016/j.jde.2009.07.016.

[19]

V. A. Liskevich and Y. A. Semenov, Some problems on markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., Adv. Partial Differential Equations, Akademie Verlag, Berlin, 11 (1996), 163–217.

[20]

Y. Liu and C. H. Lin, Structural stability for Brinkman-Forchheimer equations, Electronic Journal of Differential Equations, 2007 (2007), 8 pp.

[21]

M. LouakedN. SeloulaS. Y. Sun and S. Trabelsi, A pseudocompressibility method for the incompressible Brinkman-Forchheimer equations, Differential and Integral Equations, 28 (2015), 361-382. 

[22]

M. LouakedN. Seloula and S. Trabelsi, Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method, Numerical Methods for Partial Differential Equations, 33 (2017), 1949-1965.  doi: 10.1002/num.22173.

[23]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.

[24]

J. E. McClureW. G. Gray and C. T. Miller, Beyond anisotropy: Examining non-darcy flow in asymmetric porous media, Transp. Porous Media, 84 (2010), 535-548.  doi: 10.1007/s11242-009-9518-7.

[25]

D. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272. 

[26]

Y. Ouyang and L.-e. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.

[27]

M. Panfilov and M. Fourar, Physical splitting of nonlinear effects in high-velocity stable flow through porous media, Advances in Water Resources, 29 (2006), 30-41. 

[28]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 102 (1999), 419-439.  doi: 10.1111/1467-9590.00116.

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Communications on Pure and Applied Mathematics, 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.

[30]

B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, 165. Springer, New York, 2008.

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[32]

S. Trabelsi, Global well-posedness of a 3D Forchheimer-Bénard convection model in porous media, Submitted, (2018).

[33]

D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.

[34]

K. Vafai and R. Thiyagaraja, Analysis of flow and heat transfer at the interface region of a porous medium, International Journal of Heat and Mass Transfer, 30 (1987), 1391-1405. 

[35]

B. X. Wang and S. Y. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Mathematical Methods in the Applied Sciences, 31 (2008), 1479-1495.  doi: 10.1002/mma.985.

[36]

Y. C. YouC. D. Zhao and S. F. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Discrete & Continuous Dynamical Systems-A, 32 (2012), 3787-3800.  doi: 10.3934/dcds.2012.32.3787.

[37]

Z. J. ZhangD. X. ZhongS. J. Gao and S. L. Qiu, Fundamental Serrin type regularity criteria for 3D MHD fluid passing through the porous medium, Applicable Analysis, 96 (2017), 2130-2139.  doi: 10.2298/FIL1705287Z.

[38]

Z. J. Zhang, Refined regularity criteria for the MHD system involving only two components of the solution, Appl. Anal., 96 (2017), 2130-2139.  doi: 10.1080/00036811.2016.1207245.

[39]

Z. J. ZhangC. P. Wu and Z.-A. Yao, Remarks on global regularity for the 3D MHD system with damping, Applied Mathematics and Computation, 333 (2018), 1-7.  doi: 10.1016/j.amc.2018.03.047.

show all references

References:
[1]

S. Agmon, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, RI, 2010. doi: 10.1090/chel/369.

[2]

S. N. Antontsev and H. B. de Oliveira, The Navier-Stokes problem modified by an absorption term, Applicable Analysis, 89 (2010), 1805-1825.  doi: 10.1080/00036811.2010.495341.

[3]

J. W. Barrett and W. B. Liu, Finite element approximation of the parabolic $p$-laplacian, SIAM Journal on Numerical Analysis, 31 (1994), 413-428.  doi: 10.1137/0731022.

[4]

H. BessaihS. Trabelsi and H. Zorgati, Existence and uniqueness of global solutions for the modified anisotropic 3D Navier-Stokes equations, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 1817-1823.  doi: 10.1051/m2an/2016008.

[5]

X. J. Cai and Q. S. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, Journal of Mathematical Analysis and Applications, 343 (2008), 799-809.  doi: 10.1016/j.jmaa.2008.01.041.

[6]

C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations, Journal of Differential Equations, 248 (2010), 2263-2274.  doi: 10.1016/j.jde.2009.09.020.

[7]

A. O. ÇelebiV. Kalantarov and D. U$\widetilde {\rm{g}}$gurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Applicable Analysis, 84 (2005), 877-888.  doi: 10.1080/00036810500148911.

[8]

A. O. ÇelebiV. K. Kalantarov and D. Uǧurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Applied mathematics letters, 19 (2006), 801-807.  doi: 10.1016/j.aml.2005.11.002.

[9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988. 
[10]

J. É. J. Dupuit, Études Théoriques et Pratiques sur le Mouvement des eaux dans les Canaux Découverts et à Travers les Terrains Perméables: avec des Considérations Relatives au Régime des Grandes eaux, au Débouché à leur Donner, et à la Marche des Alluvions dans les Rivières à Fond Mobile, Dunod, 1863.

[11]

G. Duvaut and J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Archive for Rational Mechanics and Analysis, 46 (1972), 241-279.  doi: 10.1007/BF00250512.

[12]

P. Forchheimer, Wasserbewegung durch boden, Zeitz. Ver. Duetch Ing., 45 (1901), 1782-1788. 

[13]

M. FourarG. RadillaR. Lenormand and C. Moyne, On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media, Advances in Water Resources, 27 (2004), 669-677. 

[14]

C. He and Z. P. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, Journal of Differential Equations, 213 (2005), 235-254.  doi: 10.1016/j.jde.2004.07.002.

[15]

C. He and Z. P. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, Journal of Functional Analysis, 227 (2005), 113-152.  doi: 10.1016/j.jfa.2005.06.009.

[16]

C. Hsu and P. Cheng, Thermal dispersion in a porous medium, International Journal of Heat and Mass Transfer, 33 (1990), 1587-1597. 

[17]

V. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Communications on Pure and Applied Analysis, 11 (2012), 2037-2054.  doi: 10.3934/cpaa.2012.11.2037.

[18]

K. Kang and J. Lee, Interior regularity criteria for suitable weak solutions of the magnetohydrodynamic equations, Journal of Differential Equations, 247 (2009), 2310-2330.  doi: 10.1016/j.jde.2009.07.016.

[19]

V. A. Liskevich and Y. A. Semenov, Some problems on markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., Adv. Partial Differential Equations, Akademie Verlag, Berlin, 11 (1996), 163–217.

[20]

Y. Liu and C. H. Lin, Structural stability for Brinkman-Forchheimer equations, Electronic Journal of Differential Equations, 2007 (2007), 8 pp.

[21]

M. LouakedN. SeloulaS. Y. Sun and S. Trabelsi, A pseudocompressibility method for the incompressible Brinkman-Forchheimer equations, Differential and Integral Equations, 28 (2015), 361-382. 

[22]

M. LouakedN. Seloula and S. Trabelsi, Approximation of the unsteady Brinkman-Forchheimer equations by the pressure stabilization method, Numerical Methods for Partial Differential Equations, 33 (2017), 1949-1965.  doi: 10.1002/num.22173.

[23]

P. A. MarkowichE. S. Titi and S. Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29 (2016), 1292-1328.  doi: 10.1088/0951-7715/29/4/1292.

[24]

J. E. McClureW. G. Gray and C. T. Miller, Beyond anisotropy: Examining non-darcy flow in asymmetric porous media, Transp. Porous Media, 84 (2010), 535-548.  doi: 10.1007/s11242-009-9518-7.

[25]

D. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, International Journal of Heat and Fluid Flow, 12 (1991), 269-272. 

[26]

Y. Ouyang and L.-e. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 70 (2009), 2054-2059.  doi: 10.1016/j.na.2008.02.121.

[27]

M. Panfilov and M. Fourar, Physical splitting of nonlinear effects in high-velocity stable flow through porous media, Advances in Water Resources, 29 (2006), 30-41. 

[28]

L. E. Payne and B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Studies in Applied Mathematics, 102 (1999), 419-439.  doi: 10.1111/1467-9590.00116.

[29]

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Communications on Pure and Applied Mathematics, 36 (1983), 635-664.  doi: 10.1002/cpa.3160360506.

[30]

B. Straughan, Stability and Wave Motion in Porous Media, Applied Mathematical Sciences, 165. Springer, New York, 2008.

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[32]

S. Trabelsi, Global well-posedness of a 3D Forchheimer-Bénard convection model in porous media, Submitted, (2018).

[33]

D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Analysis, 68 (2008), 1986-1992.  doi: 10.1016/j.na.2007.01.025.

[34]

K. Vafai and R. Thiyagaraja, Analysis of flow and heat transfer at the interface region of a porous medium, International Journal of Heat and Mass Transfer, 30 (1987), 1391-1405. 

[35]

B. X. Wang and S. Y. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Mathematical Methods in the Applied Sciences, 31 (2008), 1479-1495.  doi: 10.1002/mma.985.

[36]

Y. C. YouC. D. Zhao and S. F. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Discrete & Continuous Dynamical Systems-A, 32 (2012), 3787-3800.  doi: 10.3934/dcds.2012.32.3787.

[37]

Z. J. ZhangD. X. ZhongS. J. Gao and S. L. Qiu, Fundamental Serrin type regularity criteria for 3D MHD fluid passing through the porous medium, Applicable Analysis, 96 (2017), 2130-2139.  doi: 10.2298/FIL1705287Z.

[38]

Z. J. Zhang, Refined regularity criteria for the MHD system involving only two components of the solution, Appl. Anal., 96 (2017), 2130-2139.  doi: 10.1080/00036811.2016.1207245.

[39]

Z. J. ZhangC. P. Wu and Z.-A. Yao, Remarks on global regularity for the 3D MHD system with damping, Applied Mathematics and Computation, 333 (2018), 1-7.  doi: 10.1016/j.amc.2018.03.047.

[1]

Wenke Tan, Fan Wu. Energy conservation and regularity for the 3D magneto-hydrodynamics equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022110

[2]

Timir Karmakar, Meraj Alam, G. P. Raja Sekhar. Analysis of Brinkman-Forchheimer extended Darcy's model in a fluid saturated anisotropic porous channel. Communications on Pure and Applied Analysis, 2022, 21 (3) : 845-865. doi: 10.3934/cpaa.2022001

[3]

Yuncheng You, Caidi Zhao, Shengfan Zhou. The existence of uniform attractors for 3D Brinkman-Forchheimer equations. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3787-3800. doi: 10.3934/dcds.2012.32.3787

[4]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[5]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[6]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[7]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[8]

Manil T. Mohan. Global and exponential attractors for the 3D Kelvin-Voigt-Brinkman-Forchheimer equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3393-3436. doi: 10.3934/dcdsb.2020067

[9]

Qiangheng Zhang, Yangrong Li. Regular attractors of asymptotically autonomous stochastic 3D Brinkman-Forchheimer equations with delays. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3515-3537. doi: 10.3934/cpaa.2021117

[10]

Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1907-1930. doi: 10.3934/cpaa.2021052

[11]

Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151

[12]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[13]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[14]

Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193

[15]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[16]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure and Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[17]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[18]

Hakima Bessaih, María J. Garrido-Atienza. Longtime behavior for 3D Navier-Stokes equations with constant delays. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1931-1948. doi: 10.3934/cpaa.2020085

[19]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[20]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (266)
  • HTML views (130)
  • Cited by (2)

Other articles
by authors

[Back to Top]