March  2020, 12(1): 1-23. doi: 10.3934/jgm.2020002

Constraint algorithm for singular field theories in the k-cosymplectic framework

Department of Mathematics, Universitat Politècnica de Catalunya, Campus Nord UPC, edifici C3, C. Jordi Girona, 1, 08034 Barcelona, Catalonia, Spain

* Corresponding author: Xavier Gràcia

Received  January 2019 Revised  July 2019 Published  January 2020

The aim of this paper is to develop a constraint algorithm for singular classical field theories in the framework of $ k $-cosymplectic geometry. Since these field theories are singular, we need to introduce the notion of $ k $-precosymplectic structure, which is a generalization of the $ k $-cosymplectic structure. Next $ k $-precosymplectic Hamiltonian systems are introduced in order to describe singular field theories, both in Lagrangian and Hamiltonian formalisms. Finally, we develop a constraint algorithm in order to find a submanifold where the existence of solutions of the field equations is ensured. The case of affine Lagrangians is studied as a relevant example.

Citation: Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Constraint algorithm for singular field theories in the k-cosymplectic framework. Journal of Geometric Mechanics, 2020, 12 (1) : 1-23. doi: 10.3934/jgm.2020002
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Addison-Wesley, California, 2nd edition, 1978. doi: 10.1090/chel/364.  Google Scholar

[2]

J. L. Anderson and P. G. Bergmann, Constraints in covariant field theories, Phys. Rev., 83 (1951), 1018-1025.  doi: 10.1103/PhysRev.83.1018.  Google Scholar

[3]

A. Awane, $k$-symplectic structures, J. Math. Phys., 33 (1992), 4046-4052.  doi: 10.1063/1.529855.  Google Scholar

[4]

C. BatlleJ. GomisJ. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems, J. Math. Phys., 27 (1986), 2953-2962.  doi: 10.1063/1.527274.  Google Scholar

[5]

L. BúaI. BucataruM. de LeónM. Salgado and S. Vilariño, Symmetries in Lagrangian field theory, Rep. Math. Phys., 75 (2015), 333-357.  doi: 10.1016/S0034-4877(15)30010-0.  Google Scholar

[6]

D. ChineaM. de León and J. C. Marrero, Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems, Comment. Math. Univ. Carolin., 32 (1991), 383-387.   Google Scholar

[7]

D. ChineaM. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians, J. Math. Phys., 35 (1994), 3410-3447.  doi: 10.1063/1.530476.  Google Scholar

[8]

P. Dirac, Generalized Hamiltonian dynamics, Can. J. Math., 2 (1950), 129-148.  doi: 10.4153/CJM-1950-012-1.  Google Scholar

[9]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, River Edge, 1997. doi: 10.1142/2199.  Google Scholar

[10]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré, 30 (1979), 129-142.   Google Scholar

[11]

M. J. GotayJ. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.  doi: 10.1063/1.523597.  Google Scholar

[12]

X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems, Diff. Geom. Appl., 2 (1992), 223-247.  doi: 10.1016/0926-2245(92)90012-C.  Google Scholar

[13]

X. Gràcia and R. Martín, Geometric aspects of time-dependent singular differential equations, Int. J. Geom. Methods Mod. Phys., 2 (2005), 597-618.  doi: 10.1142/S0219887805000697.  Google Scholar

[14]

X. GràciaR. Martín and N. Román-Roy, Constraint algorithm for $k$-presymplectic Hamiltonian systems: Application to singular field theories, Int. J. Geom. Methods Mod. Phys., 6 (2009), 851-872.  doi: 10.1142/S0219887809003795.  Google Scholar

[15]

C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Diff. Geom., 25 (1987), 23-53.  doi: 10.4310/jdg/1214440723.  Google Scholar

[16]

L. A. Ibort and J. Marín-Solano, A geometric classification of Lagrangian functions and the reduction of evolution space, J. Phys. A: Math. Gen., 25 (1992), 3353-3367.  doi: 10.1088/0305-4470/25/11/036.  Google Scholar

[17]

M. de León, J. Marín-Solano, and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, In New Developments in Differential Geometry, Springer, Netherlands, 350 (1996), 291–312. doi: 10.1007/978-94-009-0149-0_22.  Google Scholar

[18]

M. de LeónJ. Marín-SolanoJ. C. MarreroM. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles, Fortschr. Phys., 50 (2002), 105-169.  doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.  Google Scholar

[19]

M. de LeónJ. Marín-SolanoJ. C. MarreroM. C. Muñoz-Lecanda and N. Román-Roy, Pre-multisymplectic constraint algorithm for field theories, Int. J. Geom. Meth. Mod. Phys., 2 (2005), 839-871.  doi: 10.1142/S0219887805000880.  Google Scholar

[20]

M. de LeónE. MerinoJ. A. OubiñaP. R. Rodrigues and M. Salgado, Hamiltonian systems on $k$-cosymplectic manifolds, J. Math. Phys., 39 (1998), 876-893.  doi: 10.1063/1.532358.  Google Scholar

[21]

M. de LeónE. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories, J. Math. Phys., 42 (2001), 2092-2104.  doi: 10.1063/1.1360997.  Google Scholar

[22]

M. de León, M. Salgado and S. Vilariño, Methods of Differential Geometry in Classical Field Theories: $k$-Symplectic and $k$-Cosymplectic Approaches, World Scientific, Hackensack, 2016. doi: 10.1142/9693.  Google Scholar

[23]

G. MarmoG. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A, 30 (1997), 277-293.  doi: 10.1088/0305-4470/30/1/020.  Google Scholar

[24]

M. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian theory for presymplectic systems, Ann. Inst. Henry Poincaré: Phys. Theor., 57 (1992), 27-45.   Google Scholar

[25]

A. M. ReyN. Román-RoyM. Salgado and S. Vilariño, $k$-cosymplectic classical field theories: Tulckzyjew and Skinner–Rusk formulations, Math. Phys. Anal. Geom., 15 (2012), 85-119.  doi: 10.1007/s11040-012-9104-z.  Google Scholar

[26]

A. M. ReyN. Román-RoyM. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories, J. Geom. Mechs., 3 (2011), 113-137.  doi: 10.3934/jgm.2011.3.113.  Google Scholar

[27]

N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, Symmetry Integrability Geom. Methods Appl (SIGMA), 5 (2009), Paper 100, 25 pp. doi: 10.3842/SIGMA.2009.100.  Google Scholar

[28]

E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York, 1974. doi: 10.1142/9751.  Google Scholar

[29]

K. Sundermeyer, Constrained Dynamics, Lecture Notes in Physics 169, Springer, Berlin, 1982. doi: 10.1007/BFb0036225.  Google Scholar

[30]

S. Vignolo, A new presymplectic framework for time-dependent Lagrangian systems: the constraint algorithm and the second-order differential equation problem, J. Phys. A: Math. Gen., 33 (2000), 5117-5135.  doi: 10.1088/0305-4470/33/28/314.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, Addison-Wesley, California, 2nd edition, 1978. doi: 10.1090/chel/364.  Google Scholar

[2]

J. L. Anderson and P. G. Bergmann, Constraints in covariant field theories, Phys. Rev., 83 (1951), 1018-1025.  doi: 10.1103/PhysRev.83.1018.  Google Scholar

[3]

A. Awane, $k$-symplectic structures, J. Math. Phys., 33 (1992), 4046-4052.  doi: 10.1063/1.529855.  Google Scholar

[4]

C. BatlleJ. GomisJ. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems, J. Math. Phys., 27 (1986), 2953-2962.  doi: 10.1063/1.527274.  Google Scholar

[5]

L. BúaI. BucataruM. de LeónM. Salgado and S. Vilariño, Symmetries in Lagrangian field theory, Rep. Math. Phys., 75 (2015), 333-357.  doi: 10.1016/S0034-4877(15)30010-0.  Google Scholar

[6]

D. ChineaM. de León and J. C. Marrero, Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems, Comment. Math. Univ. Carolin., 32 (1991), 383-387.   Google Scholar

[7]

D. ChineaM. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians, J. Math. Phys., 35 (1994), 3410-3447.  doi: 10.1063/1.530476.  Google Scholar

[8]

P. Dirac, Generalized Hamiltonian dynamics, Can. J. Math., 2 (1950), 129-148.  doi: 10.4153/CJM-1950-012-1.  Google Scholar

[9]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, River Edge, 1997. doi: 10.1142/2199.  Google Scholar

[10]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence theorem, Ann. Inst. Henri Poincaré, 30 (1979), 129-142.   Google Scholar

[11]

M. J. GotayJ. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.  doi: 10.1063/1.523597.  Google Scholar

[12]

X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems, Diff. Geom. Appl., 2 (1992), 223-247.  doi: 10.1016/0926-2245(92)90012-C.  Google Scholar

[13]

X. Gràcia and R. Martín, Geometric aspects of time-dependent singular differential equations, Int. J. Geom. Methods Mod. Phys., 2 (2005), 597-618.  doi: 10.1142/S0219887805000697.  Google Scholar

[14]

X. GràciaR. Martín and N. Román-Roy, Constraint algorithm for $k$-presymplectic Hamiltonian systems: Application to singular field theories, Int. J. Geom. Methods Mod. Phys., 6 (2009), 851-872.  doi: 10.1142/S0219887809003795.  Google Scholar

[15]

C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Diff. Geom., 25 (1987), 23-53.  doi: 10.4310/jdg/1214440723.  Google Scholar

[16]

L. A. Ibort and J. Marín-Solano, A geometric classification of Lagrangian functions and the reduction of evolution space, J. Phys. A: Math. Gen., 25 (1992), 3353-3367.  doi: 10.1088/0305-4470/25/11/036.  Google Scholar

[17]

M. de León, J. Marín-Solano, and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, In New Developments in Differential Geometry, Springer, Netherlands, 350 (1996), 291–312. doi: 10.1007/978-94-009-0149-0_22.  Google Scholar

[18]

M. de LeónJ. Marín-SolanoJ. C. MarreroM. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles, Fortschr. Phys., 50 (2002), 105-169.  doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.  Google Scholar

[19]

M. de LeónJ. Marín-SolanoJ. C. MarreroM. C. Muñoz-Lecanda and N. Román-Roy, Pre-multisymplectic constraint algorithm for field theories, Int. J. Geom. Meth. Mod. Phys., 2 (2005), 839-871.  doi: 10.1142/S0219887805000880.  Google Scholar

[20]

M. de LeónE. MerinoJ. A. OubiñaP. R. Rodrigues and M. Salgado, Hamiltonian systems on $k$-cosymplectic manifolds, J. Math. Phys., 39 (1998), 876-893.  doi: 10.1063/1.532358.  Google Scholar

[21]

M. de LeónE. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories, J. Math. Phys., 42 (2001), 2092-2104.  doi: 10.1063/1.1360997.  Google Scholar

[22]

M. de León, M. Salgado and S. Vilariño, Methods of Differential Geometry in Classical Field Theories: $k$-Symplectic and $k$-Cosymplectic Approaches, World Scientific, Hackensack, 2016. doi: 10.1142/9693.  Google Scholar

[23]

G. MarmoG. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A, 30 (1997), 277-293.  doi: 10.1088/0305-4470/30/1/020.  Google Scholar

[24]

M. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian theory for presymplectic systems, Ann. Inst. Henry Poincaré: Phys. Theor., 57 (1992), 27-45.   Google Scholar

[25]

A. M. ReyN. Román-RoyM. Salgado and S. Vilariño, $k$-cosymplectic classical field theories: Tulckzyjew and Skinner–Rusk formulations, Math. Phys. Anal. Geom., 15 (2012), 85-119.  doi: 10.1007/s11040-012-9104-z.  Google Scholar

[26]

A. M. ReyN. Román-RoyM. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories, J. Geom. Mechs., 3 (2011), 113-137.  doi: 10.3934/jgm.2011.3.113.  Google Scholar

[27]

N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, Symmetry Integrability Geom. Methods Appl (SIGMA), 5 (2009), Paper 100, 25 pp. doi: 10.3842/SIGMA.2009.100.  Google Scholar

[28]

E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley, New York, 1974. doi: 10.1142/9751.  Google Scholar

[29]

K. Sundermeyer, Constrained Dynamics, Lecture Notes in Physics 169, Springer, Berlin, 1982. doi: 10.1007/BFb0036225.  Google Scholar

[30]

S. Vignolo, A new presymplectic framework for time-dependent Lagrangian systems: the constraint algorithm and the second-order differential equation problem, J. Phys. A: Math. Gen., 33 (2000), 5117-5135.  doi: 10.1088/0305-4470/33/28/314.  Google Scholar

[1]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[2]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[3]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[4]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[5]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[6]

Alvaro Sandroni, Eran Shmaya. A prequential test for exchangeable theories. Journal of Dynamics & Games, 2014, 1 (3) : 497-505. doi: 10.3934/jdg.2014.1.497

[7]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[8]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[9]

Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491

[10]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[11]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[12]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[13]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[14]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[15]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[16]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[18]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[19]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[20]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (102)
  • HTML views (216)
  • Cited by (0)

[Back to Top]