Advanced Search
Article Contents
Article Contents

Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • The fully coupled dynamic interaction problem of the free surface of an incompressible fluid and a rigid body beneath it, in an inviscid, irrotational framework and in the absence of surface tension, is considered. Evolution equations of the global momenta of the body+fluid system are derived. It is then shown that, under fairly general assumptions, these evolution equations combined with the evolution equation of the free-surface, referred to a body-fixed frame, is a Hamiltonian system. The Poisson brackets of the system are the sum of the canonical Zakharov bracket and the non-canonical Lie-Poisson bracket. Variations are performed consistent with the mixed Dirichlet-Neumann problem governing the system.

    Mathematics Subject Classification: Primary: 37K05, 74F10, 76B07; Secondary: 53D17.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Schematic perspective of a rigid body $ B $ beneath the free surface $ \Sigma_f $ of water. The bottom flat surface $ \mathcal{S} $ is shown by the dashed rectangle. Both $ \Sigma_f $ and $ \mathcal{S} $ extend to infinity in the $ x $ and $ y $ (horizontal) directions. In the text, the origin of the spatial frame $ xyz $ is located at the center of the disc $ C_R \subset \mathcal{S} $

    Figure 2.  A vertical slice of the setup in Figure 1, shown along with the body-fixed frame

  • [1] G. A. Athanassoulis, Analytical dynamics of wave body interaction, in Mathematical techniques for water waves (ed. B. N. Mandal), Advances in Fluid Mechanics, 8, Computational Mechanics Publications, Southampton, Boston (1997), 79–154. Available from: urlhttps://www.researchgate.net/publication/266301554_Analytical_dynamics_of_wave-body_interaction
    [2] G. K. BatchelorAn Introduction to Fluid Dynamics,, Cambridge University Press, Cambridge, 1999. 
    [3] M. BrønsM. C. ThompsonT. Leweke and K. Hourigan, Vorticity generation and conservation for two-dimensional interfaces and boundaries, J. Fluid Mech., 758 (2014), 63-93. 
    [4] R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Physical Review Letters, 71 (1993), 1661-1664.  doi: 10.1103/PhysRevLett.71.1661.
    [5] A. Compelli, R. Ivanov and M. Todorov, Hamiltonian models for the propogation of irrotational surface gravity waves over a variable bottom, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376 (2018), 20170091, 15 pp. doi: 10.1098/rsta.2017.0091.
    [6] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Classics in Mathematics, Springer, 2007.
    [7] C. S. GardnerJ. M. GreeneM. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys, Rev. Lett., 19 (1967), 1095-1097. 
    [8] F. Gay-BalmazJ. E. Marsden and T. S. Ratiu, Reduced variational formulations in free boundary continuum mechanics, J. Nonlinear Sci., 22 (2012), 463-497.  doi: 10.1007/s00332-012-9143-4.
    [9] R. Ivanov, Two-component integrable systems modelling shallow water waves: The constant vorticity case, Wave Motion, 46 (2009), 389-396.  doi: 10.1016/j.wavemoti.2009.06.012.
    [10] R. S. JohnsonA Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge University Press, 1997.  doi: 10.1017/CBO9780511624056.
    [11] F. John, On the motion of floating bodies. I., Comm. Pure App. Math., 2 (1949), 13-57.  doi: 10.1002/cpa.3160020102.
    [12] F. John, On the motion of floating bodies. Ⅱ. Simple harmonic motions, Comm. Pure App. Math., 3 (1950), 45-101.  doi: 10.1002/cpa.3160030106.
    [13] G. Kirchhoff, Ueber die Bewegung eines Rotationskörpers in einer Flüssigkeit, Journal Für Die Reine Und Angewandte Mathematik (Crelle's Journal), 71 (1869), 237-262.  doi: 10.1515/crll.1870.71.237.
    [14] E. A. Kuznetsov and V. P. Ruban, Cherenkov interaction of vortices with a free surface, J. Exp. Theor. Phys., 88 (1999), 492-505.  doi: 10.1134/1.558820.
    [15] S. D. Kelly and H. Xiong, Self-propulsion of a free hydrofoil with localized discrete vortex shedding: Analytical modeling and simulation, Theoretical and Computational Fluid Dynamics, 24, (2010), 45–50.
    [16] H. Lamb, phHydrodynamics, 6$^{th}$ edition, Dover, New York, 1932.
    [17] D. LewisJ. MarsdenR. Montgomery and T. Ratiu, The Hamiltonian structure for dynamic free boundary problems, Physica D, 18 (1986), 391-404.  doi: 10.1016/0167-2789(86)90207-1.
    [18] T. Lundgren and P. Koumoutsakos, On the generation of vorticity at a free surface, J. Fluid Mech., 382 (1999), 351-366. 
    [19] T. Miloh, Hamilton's principle, Lagrange's method, and ship motion theory, J. Ship Research, 28 (1984), 229-237. 
    [20] T. Miloh, A note on impulsive sphere motion beneath a free-surface, J. Engg. Math., 41 (2001), 1-11.  doi: 10.1023/A:1011895510151.
    [21] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Applied Mathematics 17, Second Edition, Springer-Verlag, 1999. doi: 10.1007/978-0-387-21792-5.
    [22] L. M. Milne-Thomson, Theoretical Hydrodynamics, 5$^{th}$ edition, Dover, New York, 1996.
    [23] E. P. Rood, Vorticity interactions with a free surface, in Fluid Vortices (ed. S. I. Green), Fluid Mechanics and Its Applications, 30, Springer, Dordrecht, (1995), 687–730.
    [24] A. Rouhi and J. Wright, Hamiltonian formulation for the motion of vortices in the presence of a free surface for ideal flow, Phys. Rev E, 48 (1993), 1850-1865.  doi: 10.1103/PhysRevE.48.1850.
    [25] N. Salvesen, E. O. Tuck and O. Faltinsen, Ship motions and sea loads, Transactions of the Society of Naval Architects and Marine Engineers, 6 (1970), 1–30. Available from: www.marinecontrol.org/References/papers/SalvesenTuckFaltinsen1970.PDF
    [26] P. G. SaffmanVortex Dynamics,, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1992. 
    [27] B. N. Shashikanth, Kirchhoff's equations of motion via a constrained Zakharov system, J. Geom. Mech., 8 (2016), 461-485.  doi: 10.3934/jgm.2016016.
    [28] B. N. ShashikanthJ. E. MarsdenJ. W. Burdick and S. D. Kelly, The Hamiltonian structure of a 2-D rigid cylinder interacting dynamically with $N$ point vortices, Phys. Fluids, 14 (2002), 1214-1227.  doi: 10.1063/1.1445183.
    [29] B. N. Shashikanth, Poisson brackets for the dynamically interacting system of a 2D rigid boundary and $N$ point vortices: The case of arbitrary smooth cylinder shapes, Reg. Chaotic Dyn., 10 (2005), 1-14.  doi: 10.1070/RD2005v010n01ABEH000295.
    [30] B. N. ShashikanthA. SheshmaniS. D. Kelly and J. E. Marsden, Hamiltonian structure for a neutrally buoyant rigid body interacting with $N$ vortex rings of arbitrary shape: The case of arbitrary smooth body shape, Theoretical and Computational Fluid Dynamics, 22 (2008), 37-64.  doi: 10.1007/s00162-007-0065-y.
    [31] P. Tallapragada and S. D. Kelly, Propulsion of a spherical body shedding coaxial vortex rings in an ideal fluid, Regular and Chaotic Dynamics, 18 (2013), 21-32.  doi: 10.1134/S1560354713010024.
    [32] F. Ursell, On the heaving motion of a circular cylinder on the surface of a fluid, Quart. J. Mech. App. Math., (1949), 218-231.  doi: 10.1093/qjmam/2.2.218.
    [33] F. Ursell, Short surface waves due to an oscillating immersed body, Proc. R. Soc. Lond. A, 220 (1953), 90-103.  doi: 10.1098/rspa.1953.0174.
    [34] E. van Daalen, Numerical and Theoretical Studies of Water Waves and Floating Bodies, PhD Thesis, University of Twente, 1993.
    [35] E. F. G. van Daalen, E. van Groesen and P. J. Zandbergen, A Hamiltonian formulation for nonlinear wave-body interactions, Proceedings of the Eighth International Workshop on Water Waves and Floating Bodies, St John's, Newfoundland, Canada, 1993,159–163. Available from: http://www.iwwwfb.org/Abstracts/iwwwfb08/iwwwfb08-41.pdf.
    [36] J. VankerschaverE. Kanso and J. Marsden:, The geometry and dynamics of interacting rigid bodies and point vortices, J. Geom. Mech., 1 (2009), 223-266.  doi: 10.3934/jgm.2009.1.223.
    [37] J. V. Wehausen, The motion of floating bodies, Ann. Rev. Fluid Mech., 3 (1971), 237-268.  doi: 10.1146/annurev.fl.03.010171.001321.
    [38] G. X. Wu and R. Eatock Taylor, The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies, Ocean Engg., 30 (2003), 387-400.  doi: 10.1016/S0029-8018(02)00037-9.
    [39] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), 190–194. Originally published in Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi, 9 (1968), 86–94. doi: 10.1007/BF00913182.
  • 加载中



Article Metrics

HTML views(677) PDF downloads(267) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint