-
Previous Article
On the degenerate boussinesq equations on surfaces
- JGM Home
- This Issue
-
Next Article
Rolling and no-slip bouncing in cylinders
De Donder form for second order gravity
1. | Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB. T2N 1N4, Canada |
2. | Department of Mathematics, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey |
We show that the De Donder form for second order gravity, defined in terms of Ostrogradski's version of the Legendre transformation applied to all independent variables, is globally defined by its local coordinate descriptions. It is a natural differential operator applied to the diffeomorphism invariant Lagrangian of the theory.
References:
[1] |
V. Aldaya and J. A. de Azcárraga,
Variational principles on rth. order jets of fibre bundles in field theory, Journal of Mathematical Physics, 19 (1978), 1876-1880.
doi: 10.1063/1.523904. |
[2] |
R. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity", In Gravitation: An Introduction to Current Research, L. Witten (ed.), Wiley, New York, (1962), 227–265. |
[3] |
E. Binz, J. Śniatycki and H. Fischer, Geometry of Classical Fields, Elsevier Science Publishers, New York, 1988. Reprinted by Dover Publications, Mineola, N.Y., 2006. |
[4] |
C. M. Campos, Methods in Classical Field Theory and Continuous Media, Thesis, Departamento de Mathemáticas, Faculdad de Ciencias, Universidad Autónoma de Madrid, 2010. Google Scholar |
[5] |
S. Capriotti, Differential geometry, Palatini gravity and reduction, Journal of Mathematical Physics, 55 (2014), 012902, 29pp.
doi: 10.1063/1.4862855. |
[6] |
S. Capriotti, Unified formalism for Palatini gravity, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850044, 33pp.
doi: 10.1142/S0219887818500445. |
[7] |
É. Cartan, Les Espaces Métriques Fondés sur la Notion D'aire, Actualités Scientifique et Industrielles, no 72, 1933, Reprinted by Hermann, Paris, 1971. Google Scholar |
[8] |
M. Castrillón Lopez, J. Muñoz Masqué and E. Rosado María, First-order equivalent to Einstein-Hilbert Lagrangian, Journal of Mathematical Physics, 55 (2014), 082501, 9pp.
doi: 10.1063/1.4890555. |
[9] |
Th. De Donder, Théorie invariantive du calcul des variations, Bull, Acad. de Belg., 1929, chap. 1; this reference appears in Cartan [7]. Google Scholar |
[10] |
Th. De Donder, Théorie Invariantive du Calcul Des Variations, (nouvelle édit.), Gauthier Villars, Paris, 1935. Google Scholar |
[11] |
M. de Leon and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, Elsevier Science Publishers, Amsterdam, 1985. |
[12] |
J. Gaset and N. Roman-Roy, Multisymplectic united formalism for Einstein-Hilbert gravity, Journal of Mathematical Physics, 59 (2018), 032502, 39pp.
doi: 10.1063/1.4998526. |
[13] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I, In Mechanics, Analysis and Geometry, 200 Years after Lagrange, M. Fracaviglia (ed.), Elsevier Science Publishers, 1991,203–235. |
[14] |
I. V. Kanatchikov, From the De Donder-Weyl Hamiltonian formalism to quantization of gravity, In Current topics in Mathematical Cosmology, M. Rainer and H.J. Scmidt edts., World Scientific, Singapore, 1998,457–467. |
[15] |
Th. Lepage, Sur les champs géodé siques du calcul des variations, I et II, Académie Royale de Belgique, Bulletins de la Classe de Sciences, 5e série, 22 (1936), 716–729 and 1034–1046. Google Scholar |
[16] |
C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman and Compant, 1973. |
[17] |
P. Olver, Equivalence, Invariance and Symmetry, University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511609565.![]() ![]() |
[18] |
M. Ostrogradski, Mémoires sur Les Équations Différentielles Relatives au Probléme des Isopé Rimètres, Mém. Ac. St. Petersburg, VI 4,385, 1850. Google Scholar |
[19] |
A. Palatini, Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo, 43 (1919), 203-212. Google Scholar |
[20] |
J. Śniatycki, On the canonical formulation of general relativity, Proceedings of Journees Relativistes, Faculté des Sciences, Caen, 1970,127–135. Google Scholar |
[21] |
J. Śniatycki,
On the geometric structure of classical field theory in Lagrangian formulation, Proc. Camb. Phil. Soc., 68 (1970), 475-484.
doi: 10.1017/S0305004100046284. |
[22] |
J. Śniatycki and R. Segev, De Donder Construction for Higher Jets, arXiv: 1808: 03054v2, [math-phys], 2018. Google Scholar |
[23] |
W. Szczyrba,
A symplectic structure in the set of Einstein metrics, Comm. Math. Phys., 80 (1976), 163-182.
|
[24] |
D. Vey, Multisymplectic formalism of vielnein gravity. De Donder-Weil formulation, Hamiltonian $(n-1)$-forms, Class. Quantum Grav., 32 (2015), 095005, 50pp.
doi: 10.1088/0264-9381/32/9/095005. |
show all references
References:
[1] |
V. Aldaya and J. A. de Azcárraga,
Variational principles on rth. order jets of fibre bundles in field theory, Journal of Mathematical Physics, 19 (1978), 1876-1880.
doi: 10.1063/1.523904. |
[2] |
R. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity", In Gravitation: An Introduction to Current Research, L. Witten (ed.), Wiley, New York, (1962), 227–265. |
[3] |
E. Binz, J. Śniatycki and H. Fischer, Geometry of Classical Fields, Elsevier Science Publishers, New York, 1988. Reprinted by Dover Publications, Mineola, N.Y., 2006. |
[4] |
C. M. Campos, Methods in Classical Field Theory and Continuous Media, Thesis, Departamento de Mathemáticas, Faculdad de Ciencias, Universidad Autónoma de Madrid, 2010. Google Scholar |
[5] |
S. Capriotti, Differential geometry, Palatini gravity and reduction, Journal of Mathematical Physics, 55 (2014), 012902, 29pp.
doi: 10.1063/1.4862855. |
[6] |
S. Capriotti, Unified formalism for Palatini gravity, Int. J. Geom. Methods Mod. Phys., 15 (2018), 1850044, 33pp.
doi: 10.1142/S0219887818500445. |
[7] |
É. Cartan, Les Espaces Métriques Fondés sur la Notion D'aire, Actualités Scientifique et Industrielles, no 72, 1933, Reprinted by Hermann, Paris, 1971. Google Scholar |
[8] |
M. Castrillón Lopez, J. Muñoz Masqué and E. Rosado María, First-order equivalent to Einstein-Hilbert Lagrangian, Journal of Mathematical Physics, 55 (2014), 082501, 9pp.
doi: 10.1063/1.4890555. |
[9] |
Th. De Donder, Théorie invariantive du calcul des variations, Bull, Acad. de Belg., 1929, chap. 1; this reference appears in Cartan [7]. Google Scholar |
[10] |
Th. De Donder, Théorie Invariantive du Calcul Des Variations, (nouvelle édit.), Gauthier Villars, Paris, 1935. Google Scholar |
[11] |
M. de Leon and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, Elsevier Science Publishers, Amsterdam, 1985. |
[12] |
J. Gaset and N. Roman-Roy, Multisymplectic united formalism for Einstein-Hilbert gravity, Journal of Mathematical Physics, 59 (2018), 032502, 39pp.
doi: 10.1063/1.4998526. |
[13] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I, In Mechanics, Analysis and Geometry, 200 Years after Lagrange, M. Fracaviglia (ed.), Elsevier Science Publishers, 1991,203–235. |
[14] |
I. V. Kanatchikov, From the De Donder-Weyl Hamiltonian formalism to quantization of gravity, In Current topics in Mathematical Cosmology, M. Rainer and H.J. Scmidt edts., World Scientific, Singapore, 1998,457–467. |
[15] |
Th. Lepage, Sur les champs géodé siques du calcul des variations, I et II, Académie Royale de Belgique, Bulletins de la Classe de Sciences, 5e série, 22 (1936), 716–729 and 1034–1046. Google Scholar |
[16] |
C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W.H. Freeman and Compant, 1973. |
[17] |
P. Olver, Equivalence, Invariance and Symmetry, University Press, Cambridge, UK, 1995.
doi: 10.1017/CBO9780511609565.![]() ![]() |
[18] |
M. Ostrogradski, Mémoires sur Les Équations Différentielles Relatives au Probléme des Isopé Rimètres, Mém. Ac. St. Petersburg, VI 4,385, 1850. Google Scholar |
[19] |
A. Palatini, Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton, Rend. Circ. Mat. Palermo, 43 (1919), 203-212. Google Scholar |
[20] |
J. Śniatycki, On the canonical formulation of general relativity, Proceedings of Journees Relativistes, Faculté des Sciences, Caen, 1970,127–135. Google Scholar |
[21] |
J. Śniatycki,
On the geometric structure of classical field theory in Lagrangian formulation, Proc. Camb. Phil. Soc., 68 (1970), 475-484.
doi: 10.1017/S0305004100046284. |
[22] |
J. Śniatycki and R. Segev, De Donder Construction for Higher Jets, arXiv: 1808: 03054v2, [math-phys], 2018. Google Scholar |
[23] |
W. Szczyrba,
A symplectic structure in the set of Einstein metrics, Comm. Math. Phys., 80 (1976), 163-182.
|
[24] |
D. Vey, Multisymplectic formalism of vielnein gravity. De Donder-Weil formulation, Hamiltonian $(n-1)$-forms, Class. Quantum Grav., 32 (2015), 095005, 50pp.
doi: 10.1088/0264-9381/32/9/095005. |
[1] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[2] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[3] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[4] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[5] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[6] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[7] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[8] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[9] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[10] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[11] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]