-
Previous Article
Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures
- JGM Home
- This Issue
- Next Article
Invariant structures on Lie groups
Departamento de Matemáticas Fundamentales, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid, Spain |
We approach with geometrical tools the contactization and symplectization of filiform structures and define Hamiltonian structures and momentum mappings on Lie groups.
References:
[1] |
D. V. Alekseevskiǐ,
Contact homogeneous spaces, Funktsional. Anal. i Prilozhen., 24 (1990), 74-75.
doi: 10.1007/BF01077337. |
[2] |
J. M. Ancochea-Bermúdez and M. Goze,
Classification des algèbres de Lie filiformes de dimension $8$, Arch. Math., 50 (1988), 511-525.
doi: 10.1007/BF01193621. |
[3] |
O. Baues and V. Cortés, Symplectic Lie groups: Symplectic reduction, Lagrangian extensions, and existence of Lagrangian normal subgroups, Astérisque, 379 (2016), ⅵ+90 pp. |
[4] |
W. M. Boothby and H. C. Wang,
On contact manifolds, Ann. of Math. (2), 68 (1958), 721-734.
doi: 10.2307/1970165. |
[5] |
M. Bordemann, A. Medina and A. Ouadfel,
Le group affine comme variété symplectique, Tohoku Math. J. (2), 45 (1993), 423-436.
doi: 10.2748/tmj/1178225893. |
[6] |
L. Boza, F. J. Echarte and J. Núñez,
Classification of complex filiform Lie algebras of dimension 10, Algebras Groups Geom., 11 (1994), 253-276.
|
[7] |
C. Chevalley and S. Eilenberg,
Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
doi: 10.1090/S0002-9947-1948-0024908-8. |
[8] |
B. Y. Chu,
Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145-159.
doi: 10.1090/S0002-9947-1974-0342642-7. |
[9] |
J.-M. Dardié and A. Medina,
Double extension symplectique d'un groupe de Lie symplectique, Adv. Math., 117 (1996), 208-227.
doi: 10.1006/aima.1996.0009. |
[10] |
A. Diatta,
Left invariant contact structures on Lie groups, Differential Geom. Appl., 26 (2008), 544-552.
doi: 10.1016/j.difgeo.2008.04.001. |
[11] |
J. R. Gómez and F. J. Echarte,
Classification of complex filiform nilpotent Lie algebras of dimension $9$, Rend. Sem. Fac. Sci. Univ. Cagliari, 61 (1991), 21-29.
|
[12] |
J. R. Gómez, A. Jiménez-Merchán and Y. Khakimdjanov,
Symplectic structures on the filiform Lie algebras, J. Pure Appl. Algebra, 156 (2001), 15-31.
doi: 10.1016/S0022-4049(99)90120-2. |
[13] |
J. W. Gray,
Some global properties of contact structures, Ann. of Math. (2), 69 (1959), 421-450.
doi: 10.2307/1970192. |
[14] |
M. L. Gromov,
Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 707-734.
|
[15] |
J.-I. Hano,
On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79 (1957), 885-900.
doi: 10.2307/2372440. |
[16] |
J. Helmstetter,
Radical d'une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble), 29 (1979), 17-35.
doi: 10.5802/aif.764. |
[17] |
Y. Khakimdjanov, M. Goze and A. Medina,
Symplectic or contact structures on Lie Groups, Differential Geom. Appl., 21 (2004), 41-54.
doi: 10.1016/j.difgeo.2003.12.006. |
[18] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
A. Lichnerowicz and A. Medina,
On Lie groups with left-invariant symplectic or Kählerian structures, Lett. Math. Phys., 16 (1988), 225-235.
doi: 10.1007/BF00398959. |
[20] |
R. Lutz,
Quelques remarques historiques et prospectives sur la géométrie de contact, Rend. Sem. Fac. Sci. Univ. Caligari, 58 (1988), 361-393.
|
[21] |
A. Medina,
Structure of symplectic Lie groups and momentum map, Tohoku Math. J. (2), 67 (2015), 419-431.
doi: 10.2748/tmj/1446818559. |
[22] |
M. Vergne,
Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81-116.
|
show all references
References:
[1] |
D. V. Alekseevskiǐ,
Contact homogeneous spaces, Funktsional. Anal. i Prilozhen., 24 (1990), 74-75.
doi: 10.1007/BF01077337. |
[2] |
J. M. Ancochea-Bermúdez and M. Goze,
Classification des algèbres de Lie filiformes de dimension $8$, Arch. Math., 50 (1988), 511-525.
doi: 10.1007/BF01193621. |
[3] |
O. Baues and V. Cortés, Symplectic Lie groups: Symplectic reduction, Lagrangian extensions, and existence of Lagrangian normal subgroups, Astérisque, 379 (2016), ⅵ+90 pp. |
[4] |
W. M. Boothby and H. C. Wang,
On contact manifolds, Ann. of Math. (2), 68 (1958), 721-734.
doi: 10.2307/1970165. |
[5] |
M. Bordemann, A. Medina and A. Ouadfel,
Le group affine comme variété symplectique, Tohoku Math. J. (2), 45 (1993), 423-436.
doi: 10.2748/tmj/1178225893. |
[6] |
L. Boza, F. J. Echarte and J. Núñez,
Classification of complex filiform Lie algebras of dimension 10, Algebras Groups Geom., 11 (1994), 253-276.
|
[7] |
C. Chevalley and S. Eilenberg,
Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc., 63 (1948), 85-124.
doi: 10.1090/S0002-9947-1948-0024908-8. |
[8] |
B. Y. Chu,
Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145-159.
doi: 10.1090/S0002-9947-1974-0342642-7. |
[9] |
J.-M. Dardié and A. Medina,
Double extension symplectique d'un groupe de Lie symplectique, Adv. Math., 117 (1996), 208-227.
doi: 10.1006/aima.1996.0009. |
[10] |
A. Diatta,
Left invariant contact structures on Lie groups, Differential Geom. Appl., 26 (2008), 544-552.
doi: 10.1016/j.difgeo.2008.04.001. |
[11] |
J. R. Gómez and F. J. Echarte,
Classification of complex filiform nilpotent Lie algebras of dimension $9$, Rend. Sem. Fac. Sci. Univ. Cagliari, 61 (1991), 21-29.
|
[12] |
J. R. Gómez, A. Jiménez-Merchán and Y. Khakimdjanov,
Symplectic structures on the filiform Lie algebras, J. Pure Appl. Algebra, 156 (2001), 15-31.
doi: 10.1016/S0022-4049(99)90120-2. |
[13] |
J. W. Gray,
Some global properties of contact structures, Ann. of Math. (2), 69 (1959), 421-450.
doi: 10.2307/1970192. |
[14] |
M. L. Gromov,
Stable mappings of foliations into manifolds, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 707-734.
|
[15] |
J.-I. Hano,
On Kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79 (1957), 885-900.
doi: 10.2307/2372440. |
[16] |
J. Helmstetter,
Radical d'une algèbre symétrique à gauche, Ann. Inst. Fourier (Grenoble), 29 (1979), 17-35.
doi: 10.5802/aif.764. |
[17] |
Y. Khakimdjanov, M. Goze and A. Medina,
Symplectic or contact structures on Lie Groups, Differential Geom. Appl., 21 (2004), 41-54.
doi: 10.1016/j.difgeo.2003.12.006. |
[18] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
A. Lichnerowicz and A. Medina,
On Lie groups with left-invariant symplectic or Kählerian structures, Lett. Math. Phys., 16 (1988), 225-235.
doi: 10.1007/BF00398959. |
[20] |
R. Lutz,
Quelques remarques historiques et prospectives sur la géométrie de contact, Rend. Sem. Fac. Sci. Univ. Caligari, 58 (1988), 361-393.
|
[21] |
A. Medina,
Structure of symplectic Lie groups and momentum map, Tohoku Math. J. (2), 67 (2015), 419-431.
doi: 10.2748/tmj/1446818559. |
[22] |
M. Vergne,
Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81-116.
|
[1] |
V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153 |
[2] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[3] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[4] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[5] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[6] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[7] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]