-
Previous Article
Nonholonomic and constrained variational mechanics
- JGM Home
- This Issue
-
Next Article
Invariant structures on Lie groups
Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures
Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil |
We introduce an algorithm to find possible constants of motion for a given replicator equation. The algorithm is inspired by Dirac geometry and a Hamiltonian description for the replicator equations with such constants of motion, up to a time re-parametrization, is provided using Dirac$ \backslash $big-isotropic structures. Using the equivalence between replicator and Lotka-Volterra (LV) equations, the set of conservative LV equations is enlarged. Our approach generalizes the well-known use of gauge transformations to skew-symmetrize the interaction matrix of a LV system. In the case of predator-prey model, our method does allow interaction between different predators and between different preys.
References:
[1] |
H. N. Alishah and R. de la Llave,
Tracing KAM tori in presymplectic dynamical systems, J. Dynam. Differential Equations, 24 (2012), 685-711.
doi: 10.1007/s10884-012-9265-2. |
[2] |
H. N. Alishah and P. Duarte,
Hamiltonian evolutionary games, J. Dyn. Games, 2 (2015), 33-49.
doi: 10.3934/jdg.2015.2.33. |
[3] |
H. N. Alishah and J. Lopes Dias,
Realization of tangent perturbations in discrete and continuous time conservative systems, Discrete Contin. Dyn. Syst., 34 (2014), 5359-5374.
doi: 10.3934/dcds.2014.34.5359. |
[4] |
P. Antoniou and A. Pitsillides, Congestion control in autonomous decentralized networks based on the Lotka-Volterra competition model, Artificial Neural Networks-ICANN 2009. ICANN 2009, (2009), 986–996.
doi: 10.1007/978-3-642-04277-5_99. |
[5] |
L. Brenig,
Complete factorisation and analytic solutions of generalized Lotka-Volterra equations, Phys. Lett. A, 133 (1988), 378-382.
doi: 10.1016/0375-9601(88)90920-6. |
[6] |
H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, (2013), 4–38.
doi: 10.1017/CBO9781139208642.002. |
[7] |
T. J. Courant,
Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.
doi: 10.1090/S0002-9947-1990-0998124-1. |
[8] |
T. Courant and A. Weinstein, Beyond Poisson structures, Action Hamiltoniennes de Groupes, Troisième Théorème de Lie (Lyon 1988), Travaux en Cours, Hermann, Paris, 27 (1988), 39–49, Available from: https://math.berkeley.edu/~alanw/Beyond.pdf. |
[9] |
P. Duarte, R. L. Fernandes and W. M. Oliva,
Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.
doi: 10.1006/jdeq.1998.3443. |
[10] |
B. Hernández-Bermejo and V. Fairén,
Lotka-Volterra representation of general nonlinear systems, Math. Biosci., 140 (1997), 1-32.
doi: 10.1016/S0025-5564(96)00131-9. |
[11] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[12] |
M. Jotz and T. S. Ratiu,
Dirac structures, nonholonomic systems and reduction, Rep. Math. Phys., 69 (2012), 5-56.
doi: 10.1016/S0034-4877(12)60016-0. |
[13] |
A. J. Lotka, Elements of mathematical biology, Dover Publications, Inc., New York, N. Y., (1958). |
[14] |
S. Smale,
On the differential equations of species in competition, J. Math. Biol., 3 (1976), 5-7.
doi: 10.1007/BF00307854. |
[15] |
I. Vaisman,
Isotropic subbundles of $TM\oplus T^*M$, Int. J. Geom. Methods Mod. Phys., 4 (2007), 487-516.
doi: 10.1142/S0219887807002156. |
[16] |
I. Vaisman, Weak-Hamiltonian dynamical systems, J. Math. Phys., 48 (2007), 082903, 13 pp.
doi: 10.1063/1.2769145. |
[17] |
A. van der Schaft,
Port-Hamiltonian systems: An introductory survey, International Congress of Mathematicians, Eur. Math. Soc., Zürich, 3 (2006), 1339-1365.
|
[18] |
V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990. |
[19] |
H. Yoshimura and J. E. Marsden,
Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.
doi: 10.1016/j.geomphys.2006.02.009. |
show all references
References:
[1] |
H. N. Alishah and R. de la Llave,
Tracing KAM tori in presymplectic dynamical systems, J. Dynam. Differential Equations, 24 (2012), 685-711.
doi: 10.1007/s10884-012-9265-2. |
[2] |
H. N. Alishah and P. Duarte,
Hamiltonian evolutionary games, J. Dyn. Games, 2 (2015), 33-49.
doi: 10.3934/jdg.2015.2.33. |
[3] |
H. N. Alishah and J. Lopes Dias,
Realization of tangent perturbations in discrete and continuous time conservative systems, Discrete Contin. Dyn. Syst., 34 (2014), 5359-5374.
doi: 10.3934/dcds.2014.34.5359. |
[4] |
P. Antoniou and A. Pitsillides, Congestion control in autonomous decentralized networks based on the Lotka-Volterra competition model, Artificial Neural Networks-ICANN 2009. ICANN 2009, (2009), 986–996.
doi: 10.1007/978-3-642-04277-5_99. |
[5] |
L. Brenig,
Complete factorisation and analytic solutions of generalized Lotka-Volterra equations, Phys. Lett. A, 133 (1988), 378-382.
doi: 10.1016/0375-9601(88)90920-6. |
[6] |
H. Bursztyn, A brief introduction to Dirac manifolds, Geometric and Topological Methods for Quantum Field Theory, Cambridge Univ. Press, Cambridge, (2013), 4–38.
doi: 10.1017/CBO9781139208642.002. |
[7] |
T. J. Courant,
Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.
doi: 10.1090/S0002-9947-1990-0998124-1. |
[8] |
T. Courant and A. Weinstein, Beyond Poisson structures, Action Hamiltoniennes de Groupes, Troisième Théorème de Lie (Lyon 1988), Travaux en Cours, Hermann, Paris, 27 (1988), 39–49, Available from: https://math.berkeley.edu/~alanw/Beyond.pdf. |
[9] |
P. Duarte, R. L. Fernandes and W. M. Oliva,
Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.
doi: 10.1006/jdeq.1998.3443. |
[10] |
B. Hernández-Bermejo and V. Fairén,
Lotka-Volterra representation of general nonlinear systems, Math. Biosci., 140 (1997), 1-32.
doi: 10.1016/S0025-5564(96)00131-9. |
[11] |
J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.
doi: 10.1017/CBO9781139173179.![]() ![]() ![]() |
[12] |
M. Jotz and T. S. Ratiu,
Dirac structures, nonholonomic systems and reduction, Rep. Math. Phys., 69 (2012), 5-56.
doi: 10.1016/S0034-4877(12)60016-0. |
[13] |
A. J. Lotka, Elements of mathematical biology, Dover Publications, Inc., New York, N. Y., (1958). |
[14] |
S. Smale,
On the differential equations of species in competition, J. Math. Biol., 3 (1976), 5-7.
doi: 10.1007/BF00307854. |
[15] |
I. Vaisman,
Isotropic subbundles of $TM\oplus T^*M$, Int. J. Geom. Methods Mod. Phys., 4 (2007), 487-516.
doi: 10.1142/S0219887807002156. |
[16] |
I. Vaisman, Weak-Hamiltonian dynamical systems, J. Math. Phys., 48 (2007), 082903, 13 pp.
doi: 10.1063/1.2769145. |
[17] |
A. van der Schaft,
Port-Hamiltonian systems: An introductory survey, International Congress of Mathematicians, Eur. Math. Soc., Zürich, 3 (2006), 1339-1365.
|
[18] |
V. Volterra, Leçons sur la Théorie Mathématique de la Lutte Pour la vie, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1990. |
[19] |
H. Yoshimura and J. E. Marsden,
Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.
doi: 10.1016/j.geomphys.2006.02.009. |
[1] |
Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 |
[2] |
Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999 |
[3] |
Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135 |
[4] |
Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469 |
[5] |
Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059 |
[6] |
Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75 |
[7] |
Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 |
[8] |
Gunter Neumann, Stefan Schuster. Modeling the rock - scissors - paper game between bacteriocin producing bacteria by Lotka-Volterra equations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 207-228. doi: 10.3934/dcdsb.2007.8.207 |
[9] |
Tongren Ding, Hai Huang, Fabio Zanolin. A priori bounds and periodic solutions for a class of planar systems with applications to Lotka-Volterra equations. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 103-117. doi: 10.3934/dcds.1995.1.103 |
[10] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[11] |
Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077 |
[12] |
Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012 |
[13] |
Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 |
[14] |
Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 |
[15] |
Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 |
[16] |
Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 |
[17] |
Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137 |
[18] |
Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011 |
[19] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[20] |
Rui Wang, Xiaoyue Li, Denis S. Mukama. On stochastic multi-group Lotka-Volterra ecosystems with regime switching. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3499-3528. doi: 10.3934/dcdsb.2017177 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]