
-
Previous Article
Control of locomotion systems and dynamics in relative periodic orbits
- JGM Home
- This Issue
-
Next Article
The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps
Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $
1. | School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia |
2. | Zentrum Mathematik, M8, TU München, Boltzmannstraße 3, D-85748 Garching bei München, Germany |
The 3-body problem in $ \mathbb{R}^4 $ has 24 dimensions and is invariant under translations and rotations. We do the full symplectic symmetry reduction and obtain a reduced Hamiltonian in local symplectic coordinates on a reduced phase space with 8 dimensions. The Hamiltonian depends on two parameters $ \mu_1 > \mu_2 \ge 0 $, related to the conserved angular momentum. The limit $ \mu_2 \to 0 $ corresponds to the 3-dimensional limit. We show that the reduced Hamiltonian has three relative equilibria that are local minima and hence Lyapunov stable when $ \mu_2 $ is sufficiently small. This proves the existence of balls of initial conditions of full dimension that do not contain any orbits that are unbounded.
References:
[1] |
A. Albouy,
Integral manifolds of the $N$-body problem, Invent. Math., 114 (1993), 463-488.
doi: 10.1007/BF01232677. |
[2] |
A. Albouy and A. Chenciner,
Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.
doi: 10.1007/s002220050200. |
[3] |
A. Albouy and H. R. Dullin, Relative equilibra of the 3-body problem in $R^4$, J. Geom. Mech., 12, 2020, 323-341.
doi: 10.3934/jgm.2020012. |
[4] |
A. Chenciner,
The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.
doi: 10.3934/dcds.2013.33.1033. |
[5] |
M. Herman,
Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Doc. Math., 2 (1998), 797-808.
|
[6] |
C. G. J. Jacobi,
Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.
doi: 10.1515/crll.1843.26.115. |
[7] |
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966. |
[8] |
J. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. on Math. Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[9] |
T. Schmah and C. Stoica, On the n-body problem in $R^4$, arXiv: 1907.08746. |
[10] |
S. Smale,
Topology and mechanics. I, Inv. Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778. |
[11] |
E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edition, Cambridge University Press, New York, 1959.
![]() ![]() |
show all references
References:
[1] |
A. Albouy,
Integral manifolds of the $N$-body problem, Invent. Math., 114 (1993), 463-488.
doi: 10.1007/BF01232677. |
[2] |
A. Albouy and A. Chenciner,
Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.
doi: 10.1007/s002220050200. |
[3] |
A. Albouy and H. R. Dullin, Relative equilibra of the 3-body problem in $R^4$, J. Geom. Mech., 12, 2020, 323-341.
doi: 10.3934/jgm.2020012. |
[4] |
A. Chenciner,
The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.
doi: 10.3934/dcds.2013.33.1033. |
[5] |
M. Herman,
Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Doc. Math., 2 (1998), 797-808.
|
[6] |
C. G. J. Jacobi,
Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.
doi: 10.1515/crll.1843.26.115. |
[7] |
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966. |
[8] |
J. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. on Math. Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[9] |
T. Schmah and C. Stoica, On the n-body problem in $R^4$, arXiv: 1907.08746. |
[10] |
S. Smale,
Topology and mechanics. I, Inv. Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778. |
[11] |
E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edition, Cambridge University Press, New York, 1959.
![]() ![]() |


[1] |
Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745 |
[2] |
Alain Albouy, Holger R. Dullin. Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 323-341. doi: 10.3934/jgm.2020012 |
[3] |
Giovanni F. Gronchi, Chiara Tardioli. The evolution of the orbit distance in the double averaged restricted 3-body problem with crossing singularities. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1323-1344. doi: 10.3934/dcdsb.2013.18.1323 |
[4] |
Alain Chenciner, Jacques Féjoz. The flow of the equal-mass spatial 3-body problem in the neighborhood of the equilateral relative equilibrium. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 421-438. doi: 10.3934/dcdsb.2008.10.421 |
[5] |
Qunyao Yin, Shiqing Zhang. New periodic solutions for the circular restricted 3-body and 4-body problems. Communications on Pure and Applied Analysis, 2010, 9 (1) : 249-260. doi: 10.3934/cpaa.2010.9.249 |
[6] |
L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395 |
[7] |
Florin Diacu, Shuqiang Zhu. Almost all 3-body relative equilibria on $ \mathbb S^2 $ and $ \mathbb H^2 $ are inclined. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1131-1143. doi: 10.3934/dcdss.2020067 |
[8] |
Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13 |
[9] |
Elbaz I. Abouelmagd, Juan Luis García Guirao, Jaume Llibre. Periodic orbits for the perturbed planar circular restricted 3–body problem. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1007-1020. doi: 10.3934/dcdsb.2019003 |
[10] |
Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149 |
[11] |
Samuel R. Kaplan, Ernesto A. Lacomba, Jaume Llibre. Symbolic dynamics of the elliptic rectilinear restricted 3--body problem. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 541-555. doi: 10.3934/dcdss.2008.1.541 |
[12] |
Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009 |
[13] |
Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987 |
[14] |
E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1 |
[15] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[16] |
C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7 |
[17] |
Regina Martínez, Carles Simó. On the stability of the Lagrangian homographic solutions in a curved three-body problem on $\mathbb{S}^2$. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1157-1175. doi: 10.3934/dcds.2013.33.1157 |
[18] |
Xiaojun Chang, Tiancheng Ouyang, Duokui Yan. Linear stability of the criss-cross orbit in the equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5971-5991. doi: 10.3934/dcds.2016062 |
[19] |
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044 |
[20] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]