September  2020, 12(3): 377-394. doi: 10.3934/jgm.2020011

Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $

1. 

School of Mathematics and Statistics, University of Sydney, Sydney NSW 2006, Australia

2. 

Zentrum Mathematik, M8, TU München, Boltzmannstraße 3, D-85748 Garching bei München, Germany

Dedicated to James Montaldi

Received  August 2019 Revised  October 2019 Published  March 2020

The 3-body problem in $ \mathbb{R}^4 $ has 24 dimensions and is invariant under translations and rotations. We do the full symplectic symmetry reduction and obtain a reduced Hamiltonian in local symplectic coordinates on a reduced phase space with 8 dimensions. The Hamiltonian depends on two parameters $ \mu_1 > \mu_2 \ge 0 $, related to the conserved angular momentum. The limit $ \mu_2 \to 0 $ corresponds to the 3-dimensional limit. We show that the reduced Hamiltonian has three relative equilibria that are local minima and hence Lyapunov stable when $ \mu_2 $ is sufficiently small. This proves the existence of balls of initial conditions of full dimension that do not contain any orbits that are unbounded.

Citation: Holger R. Dullin, Jürgen Scheurle. Symmetry reduction of the 3-body problem in $ \mathbb{R}^4 $. Journal of Geometric Mechanics, 2020, 12 (3) : 377-394. doi: 10.3934/jgm.2020011
References:
[1]

A. Albouy, Integral manifolds of the $N$-body problem, Invent. Math., 114 (1993), 463-488.  doi: 10.1007/BF01232677.  Google Scholar

[2]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.  doi: 10.1007/s002220050200.  Google Scholar

[3]

A. Albouy and H. R. Dullin, Relative equilibra of the 3-body problem in $R^4$, J. Geom. Mech., 12, 2020, 323-341. doi: 10.3934/jgm.2020012.  Google Scholar

[4]

A. Chenciner, The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.  doi: 10.3934/dcds.2013.33.1033.  Google Scholar

[5]

M. Herman, Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Doc. Math., 2 (1998), 797-808.   Google Scholar

[6]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.  doi: 10.1515/crll.1843.26.115.  Google Scholar

[7]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[8]

J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. on Math. Phys., 5 (1974), 121-130.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[9]

T. Schmah and C. Stoica, On the n-body problem in $R^4$, arXiv: 1907.08746. Google Scholar

[10]

S. Smale, Topology and mechanics. I, Inv. Math., 10 (1970), 305-331.  doi: 10.1007/BF01418778.  Google Scholar

[11] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edition, Cambridge University Press, New York, 1959.   Google Scholar

show all references

References:
[1]

A. Albouy, Integral manifolds of the $N$-body problem, Invent. Math., 114 (1993), 463-488.  doi: 10.1007/BF01232677.  Google Scholar

[2]

A. Albouy and A. Chenciner, Le problème des $n$ corps et les distances mutuelles, Invent. Math., 131 (1998), 151-184.  doi: 10.1007/s002220050200.  Google Scholar

[3]

A. Albouy and H. R. Dullin, Relative equilibra of the 3-body problem in $R^4$, J. Geom. Mech., 12, 2020, 323-341. doi: 10.3934/jgm.2020012.  Google Scholar

[4]

A. Chenciner, The angular momentum of a relative equilibrium, Discrete Contin. Dyn. Syst., 33 (2013), 1033-1047.  doi: 10.3934/dcds.2013.33.1033.  Google Scholar

[5]

M. Herman, Some open problems in dynamical systems, Proceedings of the International Congress of Mathematicians, Doc. Math., 2 (1998), 797-808.   Google Scholar

[6]

C. G. J. Jacobi, Sur l'élimination des noeuds dans le problème des trois corps, J. Reine Angew. Math., 26 (1843), 115-131.  doi: 10.1515/crll.1843.26.115.  Google Scholar

[7]

T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132 Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[8]

J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. on Math. Phys., 5 (1974), 121-130.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[9]

T. Schmah and C. Stoica, On the n-body problem in $R^4$, arXiv: 1907.08746. Google Scholar

[10]

S. Smale, Topology and mechanics. I, Inv. Math., 10 (1970), 305-331.  doi: 10.1007/BF01418778.  Google Scholar

[11] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, 4th edition, Cambridge University Press, New York, 1959.   Google Scholar
Figure 1.  Scaled energy-momentum diagram of the isosceles family of relative equilibria (or balanced configuration) in the 3-body problem in dimension 4 for two different mass ratios. These relative equilibria are minima of the Hamiltonian for sufficiently large negative scaled energy $ h $, which occurs for small $ b $ corresponding to small $ \mu_2 $
Figure 2.  Parameter space $ n = m_1/m > 0 $ and shape parameter $ t \in (0, 1) $ of the isosceles equilibrium. The curves divide the positive quadrant into 6 regions. The horizontal line $ t = 2 - \sqrt{3} $ corresponds to the equilateral triangles. The parabola-shaped curve $ P_1(n, t) = 0 $ indicates a vanishing of the determinant of the $ (q_2, q_3) $-block. The curve $ P_2(n, t) = 0 $ starting at the origin indicates a vanishing of the determinant of the $ (q_2, q_3) $-block and an infinity in the determinant of the $ (p_2, p_3) $-block. In the region adjacent to the $ n $-axis all eigenvalues are positive and the isosceles solution is a minimum of the 3-body problem in $ \mathbb{R}^4 $
[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[3]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[4]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[5]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[6]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[7]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[8]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[9]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[10]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[11]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[12]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[13]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[14]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[15]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[16]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[17]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[18]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[19]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[20]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (132)
  • HTML views (359)
  • Cited by (0)

Other articles
by authors

[Back to Top]