# American Institute of Mathematical Sciences

June  2020, 12(2): 165-308. doi: 10.3934/jgm.2020013

## Nonholonomic and constrained variational mechanics

 Department of Mathematics and Statistics, Queeen's University, Kingston, ON K7L 3N6, Canada

Received  December 2018 Revised  January 2020 Published  June 2020 Early access  June 2020

Fund Project: Research supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada

Equations governing mechanical systems with nonholonomic constraints can be developed in two ways: (1) using the physical principles of Newtonian mechanics; (2) using a constrained variational principle. Generally, the two sets of resulting equations are not equivalent. While mechanics arises from the first of these methods, sub-Riemannian geometry is a special case of the second. Thus both sets of equations are of independent interest.

The equations in both cases are carefully derived using a novel Sobolev analysis where infinite-dimensional Hilbert manifolds are replaced with infinite-dimensional Hilbert spaces for the purposes of analysis. A useful representation of these equations is given using the so-called constrained connection derived from the system's Riemannian metric, and the constraint distribution and its orthogonal complement. In the special case of sub-Riemannian geometry, some observations are made about the affine connection formulation of the equations for extremals.

Using the affine connection formulation of the equations, the physical and variational equations are compared and conditions are given that characterise when all physical solutions arise as extremals in the variational formulation. The characterisation is complete in the real analytic case, while in the smooth case a locally constant rank assumption must be made. The main construction is that of the largest affine subbundle variety of a subbundle that is invariant under the flow of an affine vector field on the total space of a vector bundle.

Citation: Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013
##### References:

show all references

##### References:
A depiction of $\nu\hat{{\sigma}}$ and $\delta\hat{{\sigma}}$. Note that $\nu\hat{{\sigma}}_s$ is the tangent vector field for $\hat{{\sigma}}_s$ and $\delta\hat{{\sigma}}^t$ is the tangent vector field for $\hat{{\sigma}}^t$
 [1] Daniel Genin, Serge Tabachnikov. On configuration spaces of plane polygons, sub-Riemannian geometry and periodic orbits of outer billiards. Journal of Modern Dynamics, 2007, 1 (2) : 155-173. doi: 10.3934/jmd.2007.1.155 [2] Erlend Grong, Alexander Vasil’ev. Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover. Journal of Geometric Mechanics, 2011, 3 (2) : 225-260. doi: 10.3934/jgm.2011.3.225 [3] Yunlong Huang, P. S. Krishnaprasad. Sub-Riemannian geometry and finite time thermodynamics Part 1: The stochastic oscillator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1243-1268. doi: 10.3934/dcdss.2020072 [4] Stefan Sommer, Anne Marie Svane. Modelling anisotropic covariance using stochastic development and sub-Riemannian frame bundle geometry. Journal of Geometric Mechanics, 2017, 9 (3) : 391-410. doi: 10.3934/jgm.2017015 [5] Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239 [6] Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313 [7] Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $L^\infty$ and some Linear Elliptic Systems. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098 [8] Harald Fripertinger. The number of invariant subspaces under a linear operator on finite vector spaces. Advances in Mathematics of Communications, 2011, 5 (2) : 407-416. doi: 10.3934/amc.2011.5.407 [9] Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial and Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411 [10] Lucas Dahinden, Álvaro del Pino. Introducing sub-Riemannian and sub-Finsler billiards. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3187-3232. doi: 10.3934/dcds.2022014 [11] Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399 [12] Pierre-Étienne Druet. Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 475-496. doi: 10.3934/dcdss.2015.8.475 [13] Eckhard Meinrenken. Quotients of double vector bundles and multigraded bundles. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021027 [14] Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 [15] Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure and Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307 [16] Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 [17] J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002 [18] Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 [19] Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623 [20] Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169

2020 Impact Factor: 0.857