-
Previous Article
The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps
- JGM Home
- This Issue
-
Next Article
Relative equilibria of the 3-body problem in $ \mathbb{R}^4 $
The method of averaging for Poisson connections on foliations and its applications
1. | Departamento de Matemáticas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, s/n, Col. Centro, C.P. 83000, Hermosillo, Son., México |
2. | Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro no. 450 nte., Col. Partido Romero, C.P. 32310, Ciudad Juárez, Chihuahua, México |
3. | Instituto de Matemática e Estatística, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis, s/n, Niterói 24210-201, Río de Janeiro, Brasil |
On a Poisson foliation equipped with a canonical and cotangential action of a compact Lie group, we describe the averaging method for Poisson connections. In this context, we generalize some previous results on Hannay-Berry connections for Hamiltonian and locally Hamiltonian actions on Poisson fiber bundles. Our main application of the averaging method for connections is the construction of invariant Dirac structures parametrized by the 2-cocycles of the de Rham-Casimir complex of the Poisson foliation.
References:
[1] |
M. Avendaño-Camacho, J. A. Vallejo and Y. Vorobiev, Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems, J. Math. Phys., 54 (2013), 15pp.
doi: 10.1063/1.4817863. |
[2] |
M. Avendaño-Camacho and Y. Vorobiev, Deformations of Poisson structures on fibered manifolds and adiabatic slow-fast systems, Int. J. Geom. Methods Mod. Phys., 14 (2017), 15pp.
doi: 10.1142/S0219887817500864. |
[3] |
O. Brahic and R. L. Fernandes,
Integrability and reduction of Hamiltonian actions on Dirac manifolds, Indag. Math., 25 (2014), 901-925.
doi: 10.1016/j.indag.2014.07.007. |
[4] |
O. Brahic and R. L. Fernandes, Poisson fibrations and fibered symplectic groupoids, in Poisson Geometry in Mathematics and Physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 41–59.
doi: 10.1090/conm/450/08733. |
[5] |
T. Courant and A. Weinstein, Beyond Poisson structures, in Action Hamiltoniennes de Groupes. Troisième Théorème de Lie, Travaux en Cours, 27, Hermann, Paris, 1988, 39–49. |
[6] |
T. J. Courant,
Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.
doi: 10.1090/S0002-9947-1990-0998124-1. |
[7] |
J.-P. Dufour and A. Wade,
On the local structure of Dirac manifolds, Compos. Math., 144 (2008), 774-786.
doi: 10.1112/S0010437X07003272. |
[8] |
V. L. Ginzburg,
Momentum mappings and Poisson cohomology, Internat. J. Math., 7 (1996), 329-358.
doi: 10.1142/S0129167X96000207. |
[9] |
V. L. Ginzburg,
Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math., 10 (1999), 977-1010.
doi: 10.1142/S0129167X99000422. |
[10] |
I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-662-02950-3. |
[11] |
J.-H. Lu, Momentum mappings and reduction of Poisson actions, in Symplectic Geometry, Groupoids, and Integrable Systems, Math. Sci. Res. Inst. Publ., 20, Springer, New York, NY, 1991,209–226.
doi: 10.1007/978-1-4613-9719-9_15. |
[12] |
J. Marsden, R. Montgomery and T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88 (1990).
doi: 10.1090/memo/0436. |
[13] |
R. Montgomery,
The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case, Commun. Math. Phys., 120 (1988), 269-294.
doi: 10.1007/BF01217966. |
[14] |
A. Pedroza, E. Velasco-Barreras and Y. Vorobiev,
Unimodularity criteria for Poisson structures on foliated manifolds, Lett. Math. Phys., 108 (2018), 861-882.
doi: 10.1007/s11005-017-1014-3. |
[15] |
M. R. Sepanski, Compact Lie Groups, Graduate Texts in Mathematics, 235, Springer, New York, 2007.
doi: 10.1007/978-0-387-49158-5. |
[16] |
P. Ševera and A. Weinstein,
Poisson geometry with a 3-form background. Noncommutative geometry and string theory, Progr. Theoret. Phys. Suppl., 144 (2001), 145-154.
doi: 10.1143/PTPS.144.145. |
[17] |
I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8495-2. |
[18] |
I. Vaisman,
Coupling Poisson and Jacobi structures on foliated manifolds, Int. J. Geom. Methods Mod. Phys., 1 (2004), 607-637.
doi: 10.1142/S0219887804000307. |
[19] |
I. Vaisman,
Foliation-coupling Dirac structures, J. Geom. Phys., 56 (2006), 917-938.
doi: 10.1016/j.geomphys.2005.05.007. |
[20] |
J. A. Vallejo and Y. Vorobiev, Invariant Poisson realizations and the averaging of Dirac structures, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), 20pp.
doi: 10.3842/SIGMA.2014.096. |
[21] |
Y. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, in Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001,249–274.
doi: 10.4064/bc54-0-14. |
[22] |
A. Wade,
Poisson fiber bundles and coupling Dirac structures, Ann. Global Anal. Geom., 3 (2008), 207-217.
doi: 10.1007/s10455-007-9079-3. |
[23] |
M. Wüstner,
A connected Lie group equals the square of the exponential image, J. Lie Theory, 13 (2003), 307-309.
|
show all references
References:
[1] |
M. Avendaño-Camacho, J. A. Vallejo and Y. Vorobiev, Higher order corrections to adiabatic invariants of generalized slow-fast Hamiltonian systems, J. Math. Phys., 54 (2013), 15pp.
doi: 10.1063/1.4817863. |
[2] |
M. Avendaño-Camacho and Y. Vorobiev, Deformations of Poisson structures on fibered manifolds and adiabatic slow-fast systems, Int. J. Geom. Methods Mod. Phys., 14 (2017), 15pp.
doi: 10.1142/S0219887817500864. |
[3] |
O. Brahic and R. L. Fernandes,
Integrability and reduction of Hamiltonian actions on Dirac manifolds, Indag. Math., 25 (2014), 901-925.
doi: 10.1016/j.indag.2014.07.007. |
[4] |
O. Brahic and R. L. Fernandes, Poisson fibrations and fibered symplectic groupoids, in Poisson Geometry in Mathematics and Physics, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008, 41–59.
doi: 10.1090/conm/450/08733. |
[5] |
T. Courant and A. Weinstein, Beyond Poisson structures, in Action Hamiltoniennes de Groupes. Troisième Théorème de Lie, Travaux en Cours, 27, Hermann, Paris, 1988, 39–49. |
[6] |
T. J. Courant,
Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.
doi: 10.1090/S0002-9947-1990-0998124-1. |
[7] |
J.-P. Dufour and A. Wade,
On the local structure of Dirac manifolds, Compos. Math., 144 (2008), 774-786.
doi: 10.1112/S0010437X07003272. |
[8] |
V. L. Ginzburg,
Momentum mappings and Poisson cohomology, Internat. J. Math., 7 (1996), 329-358.
doi: 10.1142/S0129167X96000207. |
[9] |
V. L. Ginzburg,
Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math., 10 (1999), 977-1010.
doi: 10.1142/S0129167X99000422. |
[10] |
I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-662-02950-3. |
[11] |
J.-H. Lu, Momentum mappings and reduction of Poisson actions, in Symplectic Geometry, Groupoids, and Integrable Systems, Math. Sci. Res. Inst. Publ., 20, Springer, New York, NY, 1991,209–226.
doi: 10.1007/978-1-4613-9719-9_15. |
[12] |
J. Marsden, R. Montgomery and T. Ratiu, Reduction, symmetry, and phases in mechanics, Mem. Amer. Math. Soc., 88 (1990).
doi: 10.1090/memo/0436. |
[13] |
R. Montgomery,
The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case, Commun. Math. Phys., 120 (1988), 269-294.
doi: 10.1007/BF01217966. |
[14] |
A. Pedroza, E. Velasco-Barreras and Y. Vorobiev,
Unimodularity criteria for Poisson structures on foliated manifolds, Lett. Math. Phys., 108 (2018), 861-882.
doi: 10.1007/s11005-017-1014-3. |
[15] |
M. R. Sepanski, Compact Lie Groups, Graduate Texts in Mathematics, 235, Springer, New York, 2007.
doi: 10.1007/978-0-387-49158-5. |
[16] |
P. Ševera and A. Weinstein,
Poisson geometry with a 3-form background. Noncommutative geometry and string theory, Progr. Theoret. Phys. Suppl., 144 (2001), 145-154.
doi: 10.1143/PTPS.144.145. |
[17] |
I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994.
doi: 10.1007/978-3-0348-8495-2. |
[18] |
I. Vaisman,
Coupling Poisson and Jacobi structures on foliated manifolds, Int. J. Geom. Methods Mod. Phys., 1 (2004), 607-637.
doi: 10.1142/S0219887804000307. |
[19] |
I. Vaisman,
Foliation-coupling Dirac structures, J. Geom. Phys., 56 (2006), 917-938.
doi: 10.1016/j.geomphys.2005.05.007. |
[20] |
J. A. Vallejo and Y. Vorobiev, Invariant Poisson realizations and the averaging of Dirac structures, SIGMA Symmetry Integrability Geom. Methods Appl., 10 (2014), 20pp.
doi: 10.3842/SIGMA.2014.096. |
[21] |
Y. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf, in Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publ., 54, Polish Acad. Sci. Inst. Math., Warsaw, 2001,249–274.
doi: 10.4064/bc54-0-14. |
[22] |
A. Wade,
Poisson fiber bundles and coupling Dirac structures, Ann. Global Anal. Geom., 3 (2008), 207-217.
doi: 10.1007/s10455-007-9079-3. |
[23] |
M. Wüstner,
A connected Lie group equals the square of the exponential image, J. Lie Theory, 13 (2003), 307-309.
|
[1] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[2] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[3] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[4] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[5] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[6] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[7] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[8] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[9] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[10] |
Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020444 |
[11] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[12] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020409 |
[13] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[14] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[15] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[16] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[17] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[18] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
[19] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[20] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]