-
Previous Article
A summary on symmetries and conserved quantities of autonomous Hamiltonian systems
- JGM Home
- This Issue
-
Next Article
Getting into the vortex: On the contributions of james montaldi
Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy
We survey several aspects of the qualitative dynamics around Hamiltonian relative equilibria. We pay special attention to the role of continuous singularities and its effect in their stability, persistence and bifurcations. Our approach is semi-global using extensively the Hamiltonian tube of Marle, Guillemin and Sternberg.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Addison-Wesley Pub. Comp. Inc., 1978. |
[2] |
P. Chossat, J. P. Ortega and T. S. Ratiu,
Hamiltonian Hopf bifurcation with symmetry, Archive for Rational Mechanics and Analysis, 63 (2002), 1-33.
doi: 10.1007/s002050200182. |
[3] |
J. J. Duistermaat and J. A. Kolk, Lie Groups, Universitext, Springer-Verlag, 2000.
doi: 10.1007/978-3-642-56936-4. |
[4] |
L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144-151. Google Scholar |
[5] |
M. Fontaine and J. Montaldi,
Persistence of stationary motion under explicit symmetry breaking perturbation, Nonlinearity, 32 (2019), 1999-2023.
doi: 10.1088/1361-6544/ab003e. |
[6] |
F. Grabsi, J. Montaldi and J. P. Ortega,
Bifurcation and forced symmetry breaking in Hamiltonian systems, Comptes Rendus Mathématique Académie des Sciences, 7 (2004), 565-570.
doi: 10.1016/j.crma.2004.01.029. |
[7] |
V. Guillemin and S. Sternberg, A normal form for the moment map, in Differential Geometric Methods in Mathematical Physics, S. Sternberg ed. Mathematical Physics Studies, 6, 1984. |
[8] |
J. L. Lagrange, Essai sur le probléme des trois corps, Oeuvres, 6 (1772), 229-334. Google Scholar |
[9] |
E. Lerman and S. F. Singer,
Stability and persistence of relative equilibria at singular values of the moment map, Nonlinearity, 11 (1998), 1637-1649.
doi: 10.1088/0951-7715/11/6/012. |
[10] |
D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden,
The heavy top: A geometric treatment, Nonlinearity, 5 (1992), 1-48.
doi: 10.1088/0951-7715/5/1/001. |
[11] |
D. Lewis and J. C. Simo,
Nonlinear stability of rotating pseudo-rigid bodies, Proc. Roy. Soc. London Ser. A, 427 (1990), 281-319.
doi: 10.1098/rspa.1990.0014. |
[12] |
C. Lim, J. Montaldi and M. Roberts,
Relative equilibria of point vortices on the sphere, Physica D: Nonlinear Phenomena, 148 (2001), 97-135.
doi: 10.1016/S0167-2789(00)00167-6. |
[13] |
C. M. Marle,
Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227-251.
|
[14] |
J. E. Marsden, Lectures on Mechanics, Lecture Note Series, 174, LMS, Cambridge University
Press, 1992.
doi: 10.1017/CBO9780511624001. |
[15] |
J. E. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[16] |
J. Montaldi,
Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.
doi: 10.1088/0951-7715/10/2/009. |
[17] |
J. Montaldi,
Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry, Journal of Geometric Mechanics, 6 (2014), 237-260.
doi: 10.3934/jgm.2014.6.237. |
[18] |
J. Montaldi and C. Nava-Gaxiola,
Point vortices on the hyperbolic plane, J. Mathematical Physics, 55 (2014), 1-14.
doi: 10.1063/1.4897210. |
[19] |
J. Montaldi and M. Roberts,
Relative equilibria of molecules, J. Nonlinear Science, 9 (1999), 53-88.
doi: 10.1007/s003329900064. |
[20] |
J. Montaldi and M. Roberts,
Note on semisymplectic actions of Lie groups, C. R. Acad. Sci. Paris Ser. I, 330 (2000), 1079-1084.
doi: 10.1016/S0764-4442(00)00322-0. |
[21] |
J. Montaldi, M. Roberts and I. Stewart,
Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc., 325 (1988), 237-293.
doi: 10.1098/rsta.1988.0053. |
[22] |
J. Montaldi, M. Roberts and I. Stewart,
Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730.
doi: 10.1088/0951-7715/3/3/009. |
[23] |
J. Montaldi, M. Roberts and I. Stewart,
Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772.
doi: 10.1088/0951-7715/3/3/010. |
[24] |
J. Montaldi and M. Rodríguez-Olmos, Hamiltonian relative equilibria with continuous isotropy, arXiv: 1509.04961. Google Scholar |
[25] |
J. Montaldi and A. Shaddad, Generalized point vortex dynamics on CP$^2$, J. Geometric Mechanics, to appear.
doi: 10.3934/jgm.2019030. |
[26] |
J. Montaldi, A. Souliere and T. Tokieda,
Vortex dynamics on cylinders, SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430.
doi: 10.1137/S1111111102415569. |
[27] |
J. Montaldi and T. Tokieda,
Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.
doi: 10.1016/S0040-9383(02)00047-2. |
[28] |
J. Montaldi and T. Tokieda,
Deformation of geometry and bifurcations of vortex rings, Springer Proceedings in Mathematics and Statistics, 35 (2013), 335-370.
doi: 10.1007/978-3-0348-0451-6_14. |
[29] |
J. Moser,
Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Communications in Pure and Applied Mathematics, 29 (1976), 727-747.
doi: 10.1002/cpa.3160290613. |
[30] |
I. Newton, Philosophiae Naturalis Principia Mathematica, Book III, London, 1687. |
[31] |
J. P. Ortega and T. S. Ratiu,
Stability of Hamiltonian relative equilibria, Nonlinearity, 12 (1999), 693-720.
doi: 10.1088/0951-7715/12/3/315. |
[32] |
J. P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222, Birkhauser-Verlag, 2004.
doi: 10.1007/978-1-4757-3811-7. |
[33] |
R. S. Palais,
The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322. |
[34] |
G. W. Patrick,
Relative equilibria in Hamiltonian systems: The dynamics interpretation of nonlinear stability on the reduced phase space, J. Geom. Phys., 9 (1992), 111-119.
doi: 10.1016/0393-0440(92)90015-S. |
[35] |
F. Laurent-Polz, J. Montaldi and M. Roberts,
Point Vortices on the Sphere: Stability of Symmetric Relative Equilibria, Journal of Geometric Mechanics, 3 (2011), 439-486.
doi: 10.3934/jgm.2011.3.439. |
[36] |
M. Roberts and M. E. Sousa-Dias,
Bifurcations from relative equilibria of Hamiltonian systems, Nonlinearity, 10 (1997), 1719-1738.
doi: 10.1088/0951-7715/10/6/015. |
[37] |
M. Roberts, C. Wulff and J. S. Lamb,
Hamiltonian systems near relative equilibria, J. Differential Equations, 179 (2002), 562-604.
doi: 10.1006/jdeq.2001.4045. |
[38] |
J. C. Simo, D. Lewis and J. E. Marsden,
Stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Rational Mech. Anal., 115 (1991), 15-59.
doi: 10.1007/BF01881678. |
[39] |
S. Smale,
Topology and Mechanics I, Inventiones Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778. |
[40] |
A. Weinstein,
Normal modes for nonlinear hamiltonian systems, Inventiones Mathematicae, 20 (1973), 47-57.
doi: 10.1007/BF01405263. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2$^{nd}$ edition, Addison-Wesley Pub. Comp. Inc., 1978. |
[2] |
P. Chossat, J. P. Ortega and T. S. Ratiu,
Hamiltonian Hopf bifurcation with symmetry, Archive for Rational Mechanics and Analysis, 63 (2002), 1-33.
doi: 10.1007/s002050200182. |
[3] |
J. J. Duistermaat and J. A. Kolk, Lie Groups, Universitext, Springer-Verlag, 2000.
doi: 10.1007/978-3-642-56936-4. |
[4] |
L. Euler, De motu rectilineo trium corporum se mutuo attrahentium, Novi Comm. Acad. Sci. Imp. Petrop., 11 (1767), 144-151. Google Scholar |
[5] |
M. Fontaine and J. Montaldi,
Persistence of stationary motion under explicit symmetry breaking perturbation, Nonlinearity, 32 (2019), 1999-2023.
doi: 10.1088/1361-6544/ab003e. |
[6] |
F. Grabsi, J. Montaldi and J. P. Ortega,
Bifurcation and forced symmetry breaking in Hamiltonian systems, Comptes Rendus Mathématique Académie des Sciences, 7 (2004), 565-570.
doi: 10.1016/j.crma.2004.01.029. |
[7] |
V. Guillemin and S. Sternberg, A normal form for the moment map, in Differential Geometric Methods in Mathematical Physics, S. Sternberg ed. Mathematical Physics Studies, 6, 1984. |
[8] |
J. L. Lagrange, Essai sur le probléme des trois corps, Oeuvres, 6 (1772), 229-334. Google Scholar |
[9] |
E. Lerman and S. F. Singer,
Stability and persistence of relative equilibria at singular values of the moment map, Nonlinearity, 11 (1998), 1637-1649.
doi: 10.1088/0951-7715/11/6/012. |
[10] |
D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden,
The heavy top: A geometric treatment, Nonlinearity, 5 (1992), 1-48.
doi: 10.1088/0951-7715/5/1/001. |
[11] |
D. Lewis and J. C. Simo,
Nonlinear stability of rotating pseudo-rigid bodies, Proc. Roy. Soc. London Ser. A, 427 (1990), 281-319.
doi: 10.1098/rspa.1990.0014. |
[12] |
C. Lim, J. Montaldi and M. Roberts,
Relative equilibria of point vortices on the sphere, Physica D: Nonlinear Phenomena, 148 (2001), 97-135.
doi: 10.1016/S0167-2789(00)00167-6. |
[13] |
C. M. Marle,
Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227-251.
|
[14] |
J. E. Marsden, Lectures on Mechanics, Lecture Note Series, 174, LMS, Cambridge University
Press, 1992.
doi: 10.1017/CBO9780511624001. |
[15] |
J. E. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[16] |
J. Montaldi,
Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466.
doi: 10.1088/0951-7715/10/2/009. |
[17] |
J. Montaldi,
Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry, Journal of Geometric Mechanics, 6 (2014), 237-260.
doi: 10.3934/jgm.2014.6.237. |
[18] |
J. Montaldi and C. Nava-Gaxiola,
Point vortices on the hyperbolic plane, J. Mathematical Physics, 55 (2014), 1-14.
doi: 10.1063/1.4897210. |
[19] |
J. Montaldi and M. Roberts,
Relative equilibria of molecules, J. Nonlinear Science, 9 (1999), 53-88.
doi: 10.1007/s003329900064. |
[20] |
J. Montaldi and M. Roberts,
Note on semisymplectic actions of Lie groups, C. R. Acad. Sci. Paris Ser. I, 330 (2000), 1079-1084.
doi: 10.1016/S0764-4442(00)00322-0. |
[21] |
J. Montaldi, M. Roberts and I. Stewart,
Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc., 325 (1988), 237-293.
doi: 10.1098/rsta.1988.0053. |
[22] |
J. Montaldi, M. Roberts and I. Stewart,
Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730.
doi: 10.1088/0951-7715/3/3/009. |
[23] |
J. Montaldi, M. Roberts and I. Stewart,
Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772.
doi: 10.1088/0951-7715/3/3/010. |
[24] |
J. Montaldi and M. Rodríguez-Olmos, Hamiltonian relative equilibria with continuous isotropy, arXiv: 1509.04961. Google Scholar |
[25] |
J. Montaldi and A. Shaddad, Generalized point vortex dynamics on CP$^2$, J. Geometric Mechanics, to appear.
doi: 10.3934/jgm.2019030. |
[26] |
J. Montaldi, A. Souliere and T. Tokieda,
Vortex dynamics on cylinders, SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430.
doi: 10.1137/S1111111102415569. |
[27] |
J. Montaldi and T. Tokieda,
Openness of momentum maps and persistence of extremal relative equilibria, Topology, 42 (2003), 833-844.
doi: 10.1016/S0040-9383(02)00047-2. |
[28] |
J. Montaldi and T. Tokieda,
Deformation of geometry and bifurcations of vortex rings, Springer Proceedings in Mathematics and Statistics, 35 (2013), 335-370.
doi: 10.1007/978-3-0348-0451-6_14. |
[29] |
J. Moser,
Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Communications in Pure and Applied Mathematics, 29 (1976), 727-747.
doi: 10.1002/cpa.3160290613. |
[30] |
I. Newton, Philosophiae Naturalis Principia Mathematica, Book III, London, 1687. |
[31] |
J. P. Ortega and T. S. Ratiu,
Stability of Hamiltonian relative equilibria, Nonlinearity, 12 (1999), 693-720.
doi: 10.1088/0951-7715/12/3/315. |
[32] |
J. P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics, 222, Birkhauser-Verlag, 2004.
doi: 10.1007/978-1-4757-3811-7. |
[33] |
R. S. Palais,
The principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30.
doi: 10.1007/BF01941322. |
[34] |
G. W. Patrick,
Relative equilibria in Hamiltonian systems: The dynamics interpretation of nonlinear stability on the reduced phase space, J. Geom. Phys., 9 (1992), 111-119.
doi: 10.1016/0393-0440(92)90015-S. |
[35] |
F. Laurent-Polz, J. Montaldi and M. Roberts,
Point Vortices on the Sphere: Stability of Symmetric Relative Equilibria, Journal of Geometric Mechanics, 3 (2011), 439-486.
doi: 10.3934/jgm.2011.3.439. |
[36] |
M. Roberts and M. E. Sousa-Dias,
Bifurcations from relative equilibria of Hamiltonian systems, Nonlinearity, 10 (1997), 1719-1738.
doi: 10.1088/0951-7715/10/6/015. |
[37] |
M. Roberts, C. Wulff and J. S. Lamb,
Hamiltonian systems near relative equilibria, J. Differential Equations, 179 (2002), 562-604.
doi: 10.1006/jdeq.2001.4045. |
[38] |
J. C. Simo, D. Lewis and J. E. Marsden,
Stability of relative equilibria. Part I: The reduced energy-momentum method, Arch. Rational Mech. Anal., 115 (1991), 15-59.
doi: 10.1007/BF01881678. |
[39] |
S. Smale,
Topology and Mechanics I, Inventiones Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778. |
[40] |
A. Weinstein,
Normal modes for nonlinear hamiltonian systems, Inventiones Mathematicae, 20 (1973), 47-57.
doi: 10.1007/BF01405263. |
[1] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[2] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[3] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[4] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[5] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[6] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[7] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[8] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[9] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[10] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[11] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[12] |
Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082 |
[13] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[14] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[15] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[16] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[17] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[18] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020344 |
[19] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[20] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]