September  2020, 12(3): 435-446. doi: 10.3934/jgm.2020020

Some remarks about the centre of mass of two particles in spaces of constant curvature

Departamento de Matemáticas y Mecánica, IIMAS, UNAM, Apdo. Postal 20-126, Col. San Angel, Mexico City, 01000, MEXICO

Dedicated to James Montaldi

Received  September 2019 Revised  March 2020 Published  July 2020

Fund Project: The author acknowledges support for his research from the Program UNAM-DGAPA-PAPIITIN115820 and from the Alexander von Humboldt Foundation for a Georg Forster Experienced Researcher Fellowship that funded a research visit to TU Berlin where part of this work was done

The concept of centre of mass of two particles in 2D spaces of constant Gaussian curvature is discussed by recalling the notion of "relativistic rule of lever" introduced by Galperin [6] (Comm. Math. Phys. 154 (1993), 63–84), and comparing it with two other definitions of centre of mass that arise naturally on the treatment of the 2-body problem in spaces of constant curvature: firstly as the collision point of particles that are initially at rest, and secondly as the centre of rotation of steady rotation solutions. It is shown that if the particles have distinct masses then these definitions are equivalent only if the curvature vanishes and instead lead to three different notions of centre of mass in the general case.

Citation: Luis C. García-Naranjo. Some remarks about the centre of mass of two particles in spaces of constant curvature. Journal of Geometric Mechanics, 2020, 12 (3) : 435-446. doi: 10.3934/jgm.2020020
References:
[1]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.  doi: 10.1070/RD2004v009n03ABEH000280.  Google Scholar

[2]

A. V. Borisov, L. C. García-Naranjo, I. S. Mamaev and J. Montaldi, Reduction and relative equilibria for the two-body problem on spaces of constant curvature, Celest. Mech. Dyn. Astr., 130 (2018), 36 pp. doi: 10.1007/s10569-018-9835-7.  Google Scholar

[3]

J. F. Cariñena, M. F. Rañada and M. Santander, Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys., 46 (2005), 052702. doi: 10.1063/1.1893214.  Google Scholar

[4]

F. Diacu, The non-existence of centre of mass and linear momentum integrals in the curved $N$-body problem, Libertas Math., 32 (2012), 25-37.  doi: 10.14510/lm-ns.v32i1.30.  Google Scholar

[5]

F. DiacuE. Pérez-Chavela and J. G. Reyes, An intrinsic approach in the curved $n$-body problem. The negative curvature case, J. Differential Equations, 252 (2012), 4529-4562.  doi: 10.1016/j.jde.2012.01.002.  Google Scholar

[6]

G. A. Galperin, A concept of the mass center of a system of material points in the constant curvature spaces, Comm. Math. Phys., 154 (1993), 63-84.  doi: 10.1007/BF02096832.  Google Scholar

[7]

L. C. García-NaranjoJ. C. MarreroE. Pérez-Chavela and M. Rodríguez-Olmos, Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differential Equations, 260 (2016), 6375-6404.  doi: 10.1016/j.jde.2015.12.044.  Google Scholar

[8]

L. C. García-Naranjo and J. Montaldi, Attracting and repelling 2-body problems on a family of surfaces of constant curvature, J. Dyn. Diff. Equat., (2020). doi: 10.1007/s10884-020-09868-x.  Google Scholar

[9]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.  Google Scholar

[10]

C. LimJ. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere, Physica D, 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[11]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[12]

J. MontaldiR. M. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. Roy. Soc. London., 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[13]

J. Montaldi and R. M. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53-88.  doi: 10.1007/s003329900064.  Google Scholar

show all references

References:
[1]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.  doi: 10.1070/RD2004v009n03ABEH000280.  Google Scholar

[2]

A. V. Borisov, L. C. García-Naranjo, I. S. Mamaev and J. Montaldi, Reduction and relative equilibria for the two-body problem on spaces of constant curvature, Celest. Mech. Dyn. Astr., 130 (2018), 36 pp. doi: 10.1007/s10569-018-9835-7.  Google Scholar

[3]

J. F. Cariñena, M. F. Rañada and M. Santander, Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys., 46 (2005), 052702. doi: 10.1063/1.1893214.  Google Scholar

[4]

F. Diacu, The non-existence of centre of mass and linear momentum integrals in the curved $N$-body problem, Libertas Math., 32 (2012), 25-37.  doi: 10.14510/lm-ns.v32i1.30.  Google Scholar

[5]

F. DiacuE. Pérez-Chavela and J. G. Reyes, An intrinsic approach in the curved $n$-body problem. The negative curvature case, J. Differential Equations, 252 (2012), 4529-4562.  doi: 10.1016/j.jde.2012.01.002.  Google Scholar

[6]

G. A. Galperin, A concept of the mass center of a system of material points in the constant curvature spaces, Comm. Math. Phys., 154 (1993), 63-84.  doi: 10.1007/BF02096832.  Google Scholar

[7]

L. C. García-NaranjoJ. C. MarreroE. Pérez-Chavela and M. Rodríguez-Olmos, Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differential Equations, 260 (2016), 6375-6404.  doi: 10.1016/j.jde.2015.12.044.  Google Scholar

[8]

L. C. García-Naranjo and J. Montaldi, Attracting and repelling 2-body problems on a family of surfaces of constant curvature, J. Dyn. Diff. Equat., (2020). doi: 10.1007/s10884-020-09868-x.  Google Scholar

[9]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.  Google Scholar

[10]

C. LimJ. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere, Physica D, 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[11]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-0-387-21792-5.  Google Scholar

[12]

J. MontaldiR. M. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. Roy. Soc. London., 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[13]

J. Montaldi and R. M. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53-88.  doi: 10.1007/s003329900064.  Google Scholar

Figure 1.  Illustration of the centre of mass $ \boldsymbol{\bar {q}} $ according to the characterisations C1, C2 and C3
Figure 2.  The value of $ r_2 $ as a function of $ \kappa $ according to Eqs. (3), (4) and (5) under the assumption that $ 2\mu_1 = \mu_2 $ and $ r_1 = 1 $. Note that for $ \kappa>0 $ there are two branches for (5) as described in the text. The shaded area corresponds to values of $ (\kappa, r_2) $ that are forbidden since they violate the restriction that $ r = 1+r_2<\pi/ \sqrt{\kappa} $
[1]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[2]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[3]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[4]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[5]

Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251

[6]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[7]

Sebastian J. Schreiber. The $ P^* $ rule in the stochastic Holt-Lawton model of apparent competition. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 633-644. doi: 10.3934/dcdsb.2020374

[8]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[9]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[10]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[11]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[12]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[14]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[15]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[16]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[17]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[18]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[19]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[20]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (91)
  • HTML views (172)
  • Cited by (0)

Other articles
by authors

[Back to Top]