The concept of centre of mass of two particles in 2D spaces of constant Gaussian curvature is discussed by recalling the notion of "relativistic rule of lever" introduced by Galperin [
Citation: |
Figure 2. The value of $ r_2 $ as a function of $ \kappa $ according to Eqs. (3), (4) and (5) under the assumption that $ 2\mu_1 = \mu_2 $ and $ r_1 = 1 $. Note that for $ \kappa>0 $ there are two branches for (5) as described in the text. The shaded area corresponds to values of $ (\kappa, r_2) $ that are forbidden since they violate the restriction that $ r = 1+r_2<\pi/ \sqrt{\kappa} $
[1] |
A. V. Borisov, I. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.
doi: 10.1070/RD2004v009n03ABEH000280.![]() ![]() ![]() |
[2] |
A. V. Borisov, L. C. García-Naranjo, I. S. Mamaev and J. Montaldi, Reduction and relative equilibria for the two-body problem on spaces of constant curvature, Celest. Mech. Dyn. Astr., 130 (2018), 36 pp.
doi: 10.1007/s10569-018-9835-7.![]() ![]() ![]() |
[3] |
J. F. Cariñena, M. F. Rañada and M. Santander, Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys., 46 (2005), 052702.
doi: 10.1063/1.1893214.![]() ![]() ![]() |
[4] |
F. Diacu, The non-existence of centre of mass and linear momentum integrals in the curved $N$-body problem, Libertas Math., 32 (2012), 25-37.
doi: 10.14510/lm-ns.v32i1.30.![]() ![]() ![]() |
[5] |
F. Diacu, E. Pérez-Chavela and J. G. Reyes, An intrinsic approach in the curved $n$-body problem. The negative curvature case, J. Differential Equations, 252 (2012), 4529-4562.
doi: 10.1016/j.jde.2012.01.002.![]() ![]() ![]() |
[6] |
G. A. Galperin, A concept of the mass center of a system of material points in the constant curvature spaces, Comm. Math. Phys., 154 (1993), 63-84.
doi: 10.1007/BF02096832.![]() ![]() ![]() |
[7] |
L. C. García-Naranjo, J. C. Marrero, E. Pérez-Chavela and M. Rodríguez-Olmos, Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differential Equations, 260 (2016), 6375-6404.
doi: 10.1016/j.jde.2015.12.044.![]() ![]() ![]() |
[8] |
L. C. García-Naranjo and J. Montaldi, Attracting and repelling 2-body problems on a family of surfaces of constant curvature, J. Dyn. Diff. Equat., (2020).
doi: 10.1007/s10884-020-09868-x.![]() ![]() |
[9] |
V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.
doi: 10.1007/BF00049149.![]() ![]() ![]() |
[10] |
C. Lim, J. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere, Physica D, 148 (2001), 97-135.
doi: 10.1016/S0167-2789(00)00167-6.![]() ![]() ![]() |
[11] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, Springer-Verlag, New York, 1994.
doi: 10.1007/978-0-387-21792-5.![]() ![]() ![]() |
[12] |
J. Montaldi, R. M. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. Roy. Soc. London., 325 (1988), 237-293.
doi: 10.1098/rsta.1988.0053.![]() ![]() ![]() |
[13] |
J. Montaldi and R. M. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53-88.
doi: 10.1007/s003329900064.![]() ![]() ![]() |
Illustration of the centre of mass
The value of