September  2020, 12(3): 435-446. doi: 10.3934/jgm.2020020

Some remarks about the centre of mass of two particles in spaces of constant curvature

Departamento de Matemáticas y Mecánica, IIMAS, UNAM, Apdo. Postal 20-126, Col. San Angel, Mexico City, 01000, MEXICO

Dedicated to James Montaldi

Received  September 2019 Revised  March 2020 Published  September 2020 Early access  July 2020

Fund Project: The author acknowledges support for his research from the Program UNAM-DGAPA-PAPIITIN115820 and from the Alexander von Humboldt Foundation for a Georg Forster Experienced Researcher Fellowship that funded a research visit to TU Berlin where part of this work was done

The concept of centre of mass of two particles in 2D spaces of constant Gaussian curvature is discussed by recalling the notion of "relativistic rule of lever" introduced by Galperin [6] (Comm. Math. Phys. 154 (1993), 63–84), and comparing it with two other definitions of centre of mass that arise naturally on the treatment of the 2-body problem in spaces of constant curvature: firstly as the collision point of particles that are initially at rest, and secondly as the centre of rotation of steady rotation solutions. It is shown that if the particles have distinct masses then these definitions are equivalent only if the curvature vanishes and instead lead to three different notions of centre of mass in the general case.

Citation: Luis C. García-Naranjo. Some remarks about the centre of mass of two particles in spaces of constant curvature. Journal of Geometric Mechanics, 2020, 12 (3) : 435-446. doi: 10.3934/jgm.2020020
References:
[1]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.  doi: 10.1070/RD2004v009n03ABEH000280.

[2]

A. V. Borisov, L. C. García-Naranjo, I. S. Mamaev and J. Montaldi, Reduction and relative equilibria for the two-body problem on spaces of constant curvature, Celest. Mech. Dyn. Astr., 130 (2018), 36 pp. doi: 10.1007/s10569-018-9835-7.

[3]

J. F. Cariñena, M. F. Rañada and M. Santander, Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys., 46 (2005), 052702. doi: 10.1063/1.1893214.

[4]

F. Diacu, The non-existence of centre of mass and linear momentum integrals in the curved $N$-body problem, Libertas Math., 32 (2012), 25-37.  doi: 10.14510/lm-ns.v32i1.30.

[5]

F. DiacuE. Pérez-Chavela and J. G. Reyes, An intrinsic approach in the curved $n$-body problem. The negative curvature case, J. Differential Equations, 252 (2012), 4529-4562.  doi: 10.1016/j.jde.2012.01.002.

[6]

G. A. Galperin, A concept of the mass center of a system of material points in the constant curvature spaces, Comm. Math. Phys., 154 (1993), 63-84.  doi: 10.1007/BF02096832.

[7]

L. C. García-NaranjoJ. C. MarreroE. Pérez-Chavela and M. Rodríguez-Olmos, Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differential Equations, 260 (2016), 6375-6404.  doi: 10.1016/j.jde.2015.12.044.

[8]

L. C. García-Naranjo and J. Montaldi, Attracting and repelling 2-body problems on a family of surfaces of constant curvature, J. Dyn. Diff. Equat., (2020). doi: 10.1007/s10884-020-09868-x.

[9]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.

[10]

C. LimJ. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere, Physica D, 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.

[11]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-0-387-21792-5.

[12]

J. MontaldiR. M. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. Roy. Soc. London., 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.

[13]

J. Montaldi and R. M. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53-88.  doi: 10.1007/s003329900064.

show all references

References:
[1]

A. V. BorisovI. S. Mamaev and A. A. Kilin, Two-body problem on a sphere. Reduction, stochasticity, periodic orbits, Regul. Chaotic Dyn., 9 (2004), 265-279.  doi: 10.1070/RD2004v009n03ABEH000280.

[2]

A. V. Borisov, L. C. García-Naranjo, I. S. Mamaev and J. Montaldi, Reduction and relative equilibria for the two-body problem on spaces of constant curvature, Celest. Mech. Dyn. Astr., 130 (2018), 36 pp. doi: 10.1007/s10569-018-9835-7.

[3]

J. F. Cariñena, M. F. Rañada and M. Santander, Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere $S^2$ and the hyperbolic plane $H^2$, J. Math. Phys., 46 (2005), 052702. doi: 10.1063/1.1893214.

[4]

F. Diacu, The non-existence of centre of mass and linear momentum integrals in the curved $N$-body problem, Libertas Math., 32 (2012), 25-37.  doi: 10.14510/lm-ns.v32i1.30.

[5]

F. DiacuE. Pérez-Chavela and J. G. Reyes, An intrinsic approach in the curved $n$-body problem. The negative curvature case, J. Differential Equations, 252 (2012), 4529-4562.  doi: 10.1016/j.jde.2012.01.002.

[6]

G. A. Galperin, A concept of the mass center of a system of material points in the constant curvature spaces, Comm. Math. Phys., 154 (1993), 63-84.  doi: 10.1007/BF02096832.

[7]

L. C. García-NaranjoJ. C. MarreroE. Pérez-Chavela and M. Rodríguez-Olmos, Classification and stability of relative equilibria for the two-body problem in the hyperbolic space of dimension 2, J. Differential Equations, 260 (2016), 6375-6404.  doi: 10.1016/j.jde.2015.12.044.

[8]

L. C. García-Naranjo and J. Montaldi, Attracting and repelling 2-body problems on a family of surfaces of constant curvature, J. Dyn. Diff. Equat., (2020). doi: 10.1007/s10884-020-09868-x.

[9]

V. V. Kozlov and A. O. Harin, Kepler's problem in constant curvature spaces, Celestial Mech. Dynam. Astronom., 54 (1992), 393-399.  doi: 10.1007/BF00049149.

[10]

C. LimJ. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere, Physica D, 148 (2001), 97-135.  doi: 10.1016/S0167-2789(00)00167-6.

[11]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-0-387-21792-5.

[12]

J. MontaldiR. M. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. Roy. Soc. London., 325 (1988), 237-293.  doi: 10.1098/rsta.1988.0053.

[13]

J. Montaldi and R. M. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53-88.  doi: 10.1007/s003329900064.

Figure 1.  Illustration of the centre of mass $ \boldsymbol{\bar {q}} $ according to the characterisations C1, C2 and C3
Figure 2.  The value of $ r_2 $ as a function of $ \kappa $ according to Eqs. (3), (4) and (5) under the assumption that $ 2\mu_1 = \mu_2 $ and $ r_1 = 1 $. Note that for $ \kappa>0 $ there are two branches for (5) as described in the text. The shaded area corresponds to values of $ (\kappa, r_2) $ that are forbidden since they violate the restriction that $ r = 1+r_2<\pi/ \sqrt{\kappa} $
[1]

Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533

[2]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[3]

Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977

[4]

Nicola Soave, Susanna Terracini. Addendum to: Symbolic dynamics for the $N$-centre problem at negative energies. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3825-3829. doi: 10.3934/dcds.2013.33.3825

[5]

Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 569-594. doi: 10.3934/dcds.2005.12.569

[6]

D.J. Georgiev, A. J. Roberts, D. V. Strunin. Nonlinear dynamics on centre manifolds describing turbulent floods: k-$\omega$ model. Conference Publications, 2007, 2007 (Special) : 419-428. doi: 10.3934/proc.2007.2007.419

[7]

Gennadi Sardanashvily. Lagrangian dynamics of submanifolds. Relativistic mechanics. Journal of Geometric Mechanics, 2012, 4 (1) : 99-110. doi: 10.3934/jgm.2012.4.99

[8]

Misha Bialy. On Totally integrable magnetic billiards on constant curvature surface. Electronic Research Announcements, 2012, 19: 112-119. doi: 10.3934/era.2012.19.112

[9]

Piotr Gwiazda, Piotr Minakowski, Agnieszka Świerczewska-Gwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1291-1306. doi: 10.3934/dcdss.2013.6.1291

[10]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[11]

Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic and Related Models, 2020, 13 (6) : 1135-1161. doi: 10.3934/krm.2020040

[12]

Joel Spruck, Ling Xiao. Convex spacelike hypersurfaces of constant curvature in de Sitter space. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2225-2242. doi: 10.3934/dcdsb.2012.17.2225

[13]

Doan The Hieu, Tran Le Nam. The classification of constant weighted curvature curves in the plane with a log-linear density. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1641-1652. doi: 10.3934/cpaa.2014.13.1641

[14]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[15]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[16]

Van Duong Dinh. On the Cauchy problem for the nonlinear semi-relativistic equation in Sobolev spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1127-1143. doi: 10.3934/dcds.2018047

[17]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[18]

Joep H.M. Evers, Sander C. Hille, Adrian Muntean. Modelling with measures: Approximation of a mass-emitting object by a point source. Mathematical Biosciences & Engineering, 2015, 12 (2) : 357-373. doi: 10.3934/mbe.2015.12.357

[19]

Younghun Hong, Sangdon Jin. Orbital stability for the mass-critical and supercritical pseudo-relativistic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3103-3118. doi: 10.3934/dcds.2022010

[20]

Ikuo Arizono, Yasuhiko Takemoto. Statistical mechanics approach for steady-state analysis in M/M/s queueing system with balking. Journal of Industrial and Management Optimization, 2022, 18 (1) : 25-44. doi: 10.3934/jimo.2020141

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (257)
  • HTML views (175)
  • Cited by (1)

Other articles
by authors

[Back to Top]