\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries

  • * Corresponding author: Boris I. Zhilinskií

    * Corresponding author: Boris I. Zhilinskií

Dedicated to James Montaldi

Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • We investigate the elementary rearrangements of energy bands in slow-fast one-parameter families of systems whose fast subsystem possesses a half-integer spin. Beginning with a simple case without any time-reversal symmetries, we analyze and compare increasingly sophisticated model Hamiltonians with these symmetries. The models are inspired by the time-reversal modification of the Berry phase setup which uses a family of quadratic spin-quadrupole Hamiltonians of Mead [Phys. Rev. Lett. 59, 161–164 (1987)] and Avron et al [Commun. Math. Phys. 124(4), 595–627 (1989)]. An explicit correspondence between the typical quantum energy level patterns in the energy band rearrangements of the finite particle systems with compact slow phase space and those of the Dirac oscillator is found in the limit of linearization near the conical degeneracy point of the semi-quantum eigenvalues.

    Mathematics Subject Classification: Primary: 37J05, 81Q70, 81V55; Secondary: 53C80, 58J70, 70G45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Spectrum of the Dirac oscillator with $ S = \frac12 $ as function of formal control parameter $ \mu $. The energies of the bulk states (blue and green) and of the edge state (red) are given by (13)

    Figure 2.  Correlation diagram of the deformed spin-orbit system with spin $ S = \frac12 $ and $ N\gg S $ as function of formal coupling control parameter $ \gamma $. Bold solid lines represent the energies of the bulk states (blue and green) and the edge state (red). When the value of $ \gamma $ varies, one single state (edge) changes bands, while all other states (bulk) remain within the same band

    Figure 3.  Spectrum of the $ N,S = \frac12 $ system (two coupled angular momenta of conserved lengths) with Hamiltonian $ \hat{H}_\gamma $ (22) as function of parameter $ \gamma $ (scaled magnetic field strength). Green and red solid lines represent the "bulk" states of the lower and upper band (multiplet); blue solid line marks the energy of the single "edge" state redistributed at $ \gamma = \frac12 $

    Figure 4.  Correlation diagram of the deformed spin-orbit system with Hamiltonian (29), spin $ S = \frac12 $, and $ N\gg S $ as function of formal coupling control parameter $ \gamma $. In comparison to the diagram in fig. 4, the domain of $ \gamma $ is extended from $ [0,1] $ to $ [-1,1] $; the $ \gamma>0 $ parts of both diagrams are identical. The value $ 0 $ of $ \gamma $ corresponds to the uncoupled system (two bands of equal number of states), while the values $ -1 $ and $ +1 $ correspond to the coupled spin-orbit system with negative and positive coupling Hamiltonian (2). Bold solid lines represent the energies of the bulk states (blue and green) and the edge states (red). When the value of $ \gamma $ varies, two single states (edge) change bands, while all other states (bulk) remain within the same bands

    Figure 5.  Correlation diagram of the spin-orbit system with the conjectured ${\mathcal{T}}$-equivariant deformation, spin $ S = \frac12 $, and $ N\gg S $ as function of formal coupling control parameter $ \alpha $. In comparison to the diagram in fig. 2, the $ [-\frac12,\frac12] $ part of the domain of $ \gamma $ is shrunk to $ 0 $, while the endpoints of the two diagrams are identical. There is no uncoupled system, the values $ -1 $ and $ +1 $ of $ \alpha $ correspond to the coupled spin-orbit system with isotropic negative and positive coupling Hamiltonian (2). Bold solid lines represent the energies of the bulk states (blue and green) and one Kramers doublet edge state (red)

    Figure 6.  Spectrum of the $ N,S = \frac12 $ system (two coupled angular momenta of conserved lengths) with ${\mathcal{T}}$-invariant Hamiltonian (31) as function of scaled spin-orbit coupling parameter $ \alpha $. Each solid line represents a Kramers doublet quantum state. Energies of the bulk states (red and green solid lines) are given by (34), while the solid blue line represents the edge state. Dotted lines indicate critical values of the semi-quantum energies (33)

    Figure 7.  Spectrum of the system with Hamiltonian (36b) obtained as linearization of ${\mathcal{T}}$-reversal ${\boldsymbol{{N}}}{\boldsymbol{{S}}}$, $ S = \frac12 $ Hamiltonian (32) for coupling parameter $ \alpha\in[-1,1] $. Compare to fig. 1 and 6. The bulk state energies (red and green lines) are given by (39)

    Figure 8.  Correlation diagram for the quadratic dynamical spin-quadrupole system in sec. 2.3.2 with the conjectured $ {\mathcal{T}}_S\times {\mathcal{T}}_N $-equivariant deformation in sec. 5, spin $ S = \frac32 $, and $ N\gg S $ as function of formal control parameter $ \alpha $ of the isotropic quadrupolar coupling term (18). The values $ \pm1 $ of $ \alpha $ correspond to the coupled system with Hamiltonian (18) times $ \pm1 $. Bold solid lines represent the energies of the bulk states (blue and green) and of the two Kramers doublet edge states (red) exchanged in opposite directions. Unlike the indices $ c_1 $ in fig. 2 and 4 which can be computed in the standard way for the $ \Lambda_{1,2} $ bundles on $ {\mathbb{S}}^2_N $ (see sec. 1.2 and 2.1), the values of $ c_1 $ in this diagram are conjectured so that they agree with the number of states in each band. See text for more detail

    Figure 9.  Spectrum of the Kramers degenerate $ {\mathcal{T}}_N\times {\mathcal{T}}_S $-invariant axially symmetric system of coupled angular momenta ${\boldsymbol{{S}}}$ (fast) and ${\boldsymbol{{N}}}$ (slow) of conserved lengths $ S = \frac32 $ and $ N = 5 $ with Hamiltonian (40) as function of the "quaternionic" spin-orbit coupling parameter $ \alpha_0 $. Solid color lines represent quantum Kramers doublet states. Specifically, the bulk state energies are depicted in blue and green, while red and purple correspond to the two edge state doublets. For the end values $ \pm1 $ of $ \alpha_0 $, the levels within each band reassemble visibly into multiplets with conserved length $ J $ of the total angular momentum $ {\boldsymbol{{N}}}+{\boldsymbol{{S}}} $ and the respective values of $ J $ are marked along the left and right vertical axes, cf. sec. 2.3.3. The edge states are distinguished by the conserved value of $ J_1 $ displayed near the $ \alpha_0 = -1 $ end of the plot. The boundaries of the lightly shaded semi-quantum energy domains (gray lines) are given by (42) where $ N_1 $ takes one of the critical values $ \{N,0\} $ and with $ N $ replaced by $ N_{\rm classical} = N+\frac12 $

    Figure 10.  Joint spectrum of the ${{\varepsilon}}$-term of the quadratic spin-orbit Hamiltonian (40) and $ \hat{J}_1 $. The values of spin $ S = \frac32 $ and slow angular momentum $ N = 5 $ correspond to fig. 9. Bold solid bars represent the bulk states (blue and green) and two Kramers doublet edge states (red). Above the energy-momentum diagram, we show the composition of the two multiplets in each superband of the spectrum of the isotropic term in sec. 2.3.3. Red arrows indicate which of the subbands takes in the particular edge states, see proposition 1

    Figure 11.  Circles $ C_{\rho} $ and $ C_r $ of respective radii $ \rho $ and $ r $ form the boundary of the annulus $ W_{\rho,r} $, and $ C_{\rho} $ is also the boundary of disk $ D_{\rho} $

    Figure 12.  Base spaces $ {\mathbb{R}}^2_\mu $ and $ {\mathbb{S}}^2_r $ of the $ \Lambda_\pm $ and $ \Delta_\pm $ eigenvector bundles, respectively, in the parameter space $ {\mathbb{R}}^3 $ of the Dirac oscillator (sec. 2.2). The spaces intersect on the $ {\mathbb{S}}^1 $ circle $ C_{\!\rho} $ involved in the Chern index calculus, see sec. A.4 for details, and compare to fig 11

  • [1] V. I. Arnold, Remarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effect, Select. Math., 1 (1995), 1–19. doi: 10.1007/BF01614072.
    [2] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Phil. Soc., 77 (1975), 49–69. doi: 10.1017/S0305004100049410.
    [3] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅱ, Math. Proc. Cambridge Phil. Soc., 78 (1975), 405–432. doi: 10.1017/S0305004100051872.
    [4] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry. Ⅲ, Math. Proc. Cambridge Phil. Soc., 79 (1976), 71–99. doi: 10.1017/S0305004100052105.
    [5] J. E. Avron, L. Sadun, J. Segert and B. Simon, Topological invariants in Fermi systems with time-reversal invariance, Phys. Rev. Lett., 61 (1988), 1329–1332. doi: 10.1103/PhysRevLett.61.1329.
    [6] J. E. Avron, L. Sadun, J. Segert and B. Simon, Chern numbers, quaternions, and Berry's phases in Fermi systems, Commun. Math. Phys., 124 (1989), 595–627. doi: 10.1007/BF01218452.
    [7] M. Baake, A brief guide to reversing and extended symmetries of dynamical systems, in Ergodic Theory and Dynamical Systems in Their Interactions with Arithmetics and Combinatorics (eds. S. Ferenczi, J. Kulaga-Przymus and M. Lemanczyk), Lect. Notes Math., 2213, Springer-Verlag, Berlin, Heidelberg, 2018, 35–40.
    [8] N. Berglund and B. Gentz, Deterministic slow-fast systems, in Noise-induced Phenomena in Slow-fast Dynamical Systems, Probability and its Applications, Springer Verlag, London, UK, 2006, 17–49.
    [9] B. A. Bernevig and  T. L. HughesTopological Insulators and Topological Superconductors, Princeton Univ. Press, Princeton, NJ, 2013.  doi: 10.1515/9781400846733.
    [10] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. Royal Soc. Lond. A, 392 (1984), 45–57. doi: 10.1098/rspa.1984.0023.
    [11] F. Faure and B. I. Zhilinskií, Topological Chern indices in molecular spectra, Phys. Rev. Lett., 85 (2000), 960–963. doi: 10.1103/PhysRevLett.85.960.
    [12] F. Faure and B. I. Zhilinskií, Topological properties of the Born–Oppenheimer approximation and implications for the exact spectrum, Lett. Math. Phys., 55 (2001), 239–247. doi: 10.1023/A:1010912815438.
    [13] F. Faure and B. I. Zhilinskií, Qualitative features of intra-molecular dynamics. What can be learned from symmetry and topology, Acta Appl. Math., 70 (2002), 265–282. doi: 10.1023/A:1013986518747.
    [14] F. Faure and B. I. Zhilinskií, Topologically coupled energy bands in molecules, Phys. Lett. A, 302 (2002), 985–988. doi: 10.1016/S0375-9601(02)01171-4.
    [15] B. Fedosov, Deformation Quantization and Index Theory, Academie Verlag, Berlin, 1996.
    [16] D. Fontanari and D. A. Sadovskií, Coherent states for the quantum complete rigid rotor, J. Geom. Phys., 129 (2018), 70–89. doi: 10.1016/j.geomphys.2018.02.021.
    [17] J. N. Fuchs, F. Piéchon, M. O. Goerbig and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, Eur. Phys. J. B, 77 (2010), 351–362. doi: 10.1140/epjb/e2010-10584-y.
    [18] F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly", Phys. Rev. Lett., 61 (1988), 2015–2018. doi: 10.1103/PhysRevLett.61.1029.
    [19] G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc., 35 (1963), 77–82. doi: 10.1039/df9633500077.
    [20] T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev., 58 (1940), 1098–1113. doi: 10.1103/PhysRev.58.1098.
    [21] T. Iwai and B. I. Zhilinskií, Energy bands: Chern numbers and symmetry, Ann. Phys. (NY), 326 (2011), 3013–3066. doi: 10.1016/j.aop.2011.07.002.
    [22] T. Iwai and B. I. Zhilinskií, Qualitative feature of the rearrangement of molecular energy spectra from a wall-crossing perspective, Phys. Lett. A, 377 (2013), 2481–2486. doi: 10.1016/j.physleta.2013.07.043.
    [23] T. Iwai and B. I. Zhilinskií, Local description of band rearrangements. Comparison of semi-quantum and full quantum approach, Acta Appl. Math., 137 (2015), 97–121. doi: 10.1007/s10440-014-9992-y.
    [24] T. Iwai and B. I. Zhilinskií, Band rearrangement through the 2D-Dirac equation: Comparing the APS and the chiral bag boundary conditions, Indagationes Math., 27 (2016), 1081–1106. doi: 10.1016/j.indag.2015.11.010.
    [25] T. Iwai and B. I. Zhilinskií, Chern number modification in crossing the boundary between different band structures: Three-band model with cubic symmetry, Rev. Math. Phys., 29 (2017), 1–91. doi: 10.1142/S0129055X17500040.
    [26] M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Ann. Phys., 160 (1985), 343–354. doi: 10.1016/0003-4916(85)90148-4.
    [27] H. A. Kramers, Théorie générale de la rotation paramagnétique dans les cristaux, Proc. Konink. Akad. Wetensch., 33 (1930), 959-972. 
    [28] J. S. W. Lamb, Reversing symmetries in dynamical systems, J. Phys. A, 25 (1992), 925–937. doi: 10.1088/0305-4470/25/4/028.
    [29] J. S. Lamb and J. A. Roberts, Time-reversal symmetry in dynamical systems: A survey, Physica D, 112 (1998), 1–39. doi: 10.1016/S0167-2789(97)00199-1.
    [30] Y. Lee Loh and M. Kim, Visualizing spin states using the spin coherent state representation, Am. J. Phys., 83 (2015), 30–35. doi: 10.1119/1.4898595.
    [31] C. A. Mead, Molecular Kramers degeneracy and non-Abelian adiabatic phase factors, Phys. Rev. Lett., 59 (1987), 161–164. doi: 10.1103/PhysRevLett.59.161.
    [32] C. A. Mead and D. G. Truhlar, On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei, J. Chem. Phys., 70 (1979), 2284–2296. doi: 10.1063/1.437734.
    [33] M. Moshinsky and A. Szczepaniak, The Dirac oscillator, J. Phys. A: Math. Gen., 22 (1989), L817–L819. doi: 10.1088/0305-4470/22/17/002.
    [34] A. I. Neishtadt and A. A. Vasiliev, Destruction of adiabatic invariance at resonances in slow-fast Hamiltonian systems, Nucl. Instr. Meth. A, 561 (2006), 158–165. doi: 10.1007/978-1-4020-6964-2_3.
    [35] A. I. Neishtadt, Averaging method and adiabatic invariants, in Hamiltonian Dynamical Systems and Applications (ed. W. Craig), NATO science for peace and security series B: Physics and Biophysics, Springer Science, Netherlands, 2008, 53–66. doi: 10.1007/978-1-4020-6964-2_3.
    [36] V. B. Pavlov-Verevkin, D. A. Sadovskií and B. I. Zhilinskií, On the dynamical meaning of the diabolic points, Europhysics Letters, 6 (1988), 573–8. doi: 10.1209/0295-5075/6/7/001.
    [37] D. A. Sadovskií and B. I. Zhilinskií, Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A, 256 (1999), 235–44. doi: 10.1016/S0375-9601(99)00229-7.
    [38] B. Simon, Holonomy, the quantum adiabatic theorem, and Berry's phase, Phys. Rev. Lett., 51 (1983), 2167–2170. doi: 10.1103/PhysRevLett.51.2167.
    [39] D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World Scientific, Singapore, 1998. doi: 10.1142/3318.
    [40] D. J. Thouless, M. Kohmoto, M. P. Nightingale and M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49 (1982), 405–408. doi: 10.1103/PhysRevLett.49.405.
    [41] J. von Neumann and E. P. Wigner, Über merkwürdige diskrete Eigenwerte. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physicalische Z., 30 (1929), 467-470. 
    [42] E. P. Wigner, Über die Operation der Zeitumkehr in der Quantenmechanik, Nachr. Akad. Ges. Wiss. Göttingen, 31 (1932), 546-559.  doi: 10.1007/978-3-662-02781-3_15.
    [43] F. Wilczek and A. Shapere, Geometric Phases in Physics, Advanced Series in Mathematical Physics, 5, World Scientific, 1989. doi: 10.1142/0613.
    [44] R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley, New York, 1988. doi: 10.1063/1.2811251.
    [45] W.-M. Zhang, D. H. Feng and R. Gilmore, Coherent states: Theory and some applications, Rev. Mod. Phys., 62 (1990), 867–927. doi: 10.1103/RevModPhys.62.867.
  • 加载中

Figures(12)

SHARE

Article Metrics

HTML views(676) PDF downloads(353) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return