doi: 10.3934/jgm.2020023

On nomalized differentials on spectral curves associated with the sinh-gordon equation

Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland

 

Received  February 2020 Published  July 2020

Fund Project: * Both authors are supported in part by the Swiss National Science Foundation

The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.

Citation: Thomas Kappeler, Yannick Widmer. On nomalized differentials on spectral curves associated with the sinh-gordon equation. Journal of Geometric Mechanics, doi: 10.3934/jgm.2020023
References:
[1]

L. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, 1960.  Google Scholar

[2]

D. BättigA. M. BlochJ.-C. Guillot and T. Kappeler, On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS, Duke Math. J., 79 (1995), 549-604.  doi: 10.1215/S0012-7094-95-07914-9.  Google Scholar

[3]

E. BelokolosA. BobenkoV. Matveev and V. Enolskii, Algebro-geometric principles of superposition of finite-zone solutions of integrable nonlinear equations, Uspekhi Mat. Nauk, 41 (1986), 3-42.   Google Scholar

[4]

M. Berti, T. Kappeler and R. Montalto, Large KAM Tori for Arbitrary Semi-linear Perturbations of the Defocusing NLS Equation, 403, Astérisque, 2018.  Google Scholar

[5]

B. Dubrovin and I. Krichever, The Schrödinger equation in a periodic field and Riemann surfaces, Dokl. Akad. Nauk SSSR, 229 (1976), 15-18.   Google Scholar

[6]

B. Dubrovin and S. Novikov, A periodic problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry, Dokl. Akad. Nauk SSSR, 219 (1974), 531-534.   Google Scholar

[7]

L. FaddeevL. Takhtajan and V. Zakharov, Complete description of solutions of the sine-Gordon equation, Dokl. Akad. Nauk Ser. Fiz., 219 (1974), 1334-1337.   Google Scholar

[8]

J. Feldman, H. Knörrer and E. Trubowitz, Riemann Surfaces of Infinite Genus, CRM Monograph Series, 20, American Math. Soc., 2003.  Google Scholar

[9]

H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progr. Theoret. Phys., 55 (1976), 438-456.  doi: 10.1143/PTP.55.438.  Google Scholar

[10]

P. Gérard and T. Kappeler, On the integrability of the Benjamin-Ono equation on the torus, preprint, arXiv: 1905.01849. Google Scholar

[11]

P. Gérard, T. Kappeler and P. Toplaov, Sharp well-posedness results for the Benjamin-Ono equation in $H^{s}(\mathbb T, \mathbb R)$ and qualitative properties of its solutions, preprint, arXiv: 2004.04857. Google Scholar

[12]

B. Grébert and T. Kappeler, The Defocusing NLS Equation and its Normal Form, EMS series of Lectures in Mathematics, European Math. Soc., 2014. doi: 10.4171/131.  Google Scholar

[13]

T. Kappeler, P. Lohrmann and P. Topalov, On normalized differentials on families of curves of infinite genus, in Spectral Theory and Geometric Analysis, Contemp. Math, 535, American Math. Soc., 2011,109–140. doi: 10.1090/conm/535/10538.  Google Scholar

[14]

T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, 2003. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[15]

T. Kappeler and J. Molnar, On the wellposedness of the defocusing mKdV equation below $L^2$, SIAM J. Math. Anal., 49 (2017), 2191–2219. doi: 10.1137/16M1096979.  Google Scholar

[16]

T. Kappeler and P. Topalov, Global well-posedness of KdV in $H^{-1}(\mathbb T, \mathbb R)$, Duke Math. J., 135 (2006), 327-360.  doi: 10.1215/S0012-7094-06-13524-X.  Google Scholar

[17]

T. Kappeler and P. Topalov, On normalized differentials on hyperelliptic curves of infinite genus, J. Differential Geom., 105 (2017), 209-248.  doi: 10.4310/jdg/1486522814.  Google Scholar

[18]

T. Kappeler and P. Topalov, On an Arnold-Liouville type theorem for the focusing NLS equation, Integrable Systems and Algebraic Geometry, Vol. 1, LMS Lecture Notes Series, 458, Cambridge University Press, 2020, 265–290. Google Scholar

[19]

T. Kappeler and P. Topalov, Arnold-Liouville theorem for integrable PDEs: A case study of the focusing NLS equation, preprint, arXiv: 2002.11638. Google Scholar

[20]

T. Kappeler and Y. Widmer, On spectral properties of the L operator in the Lax pair of the sine-Gordon equation, Journal of Math. Physics, Analysis, Geometry, 14 (2018), 452-509.  doi: 10.15407/mag14.04.452.  Google Scholar

[21]

S. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, 2000.  Google Scholar

[22]

P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.  doi: 10.1002/cpa.3160210503.  Google Scholar

[23]

H. McKean, The sine-Gordon and sinh-Gordon equations on the circle, Comm. Pure Appl. Math., 34 (1981), 197-257.  doi: 10.1002/cpa.3160340204.  Google Scholar

[24]

H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math., 30 (1975), 217-274.  doi: 10.1007/BF01425567.  Google Scholar

[25]

H. McKean and E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math., 29 (1976), 143-226.  doi: 10.1002/cpa.3160290203.  Google Scholar

[26]

H. McKean and K. Vaninsky, Action-angle variables for the cubic Schrödinger equation, Comm. Pure Appl. Math., 50 (1997), 489-562.  doi: 10.1002/(SICI)1097-0312(199706)50:6<489::AID-CPA1>3.0.CO;2-4.  Google Scholar

[27]

S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of Solitons. The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], 1984.  Google Scholar

[28]

A. Veselov and S. Novikov, Poisson brackets and complex tori, Trudy Mat. Inst. Steklov., 165 (1984), 49-61.   Google Scholar

[29]

V. Zakharov and A. Shabat, A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem I, Functional Anal. Appl., 8 (1974), 226-235.   Google Scholar

show all references

References:
[1]

L. Ahlfors and L. Sario, Riemann surfaces, Princeton Mathematical Series, 26, Princeton University Press, 1960.  Google Scholar

[2]

D. BättigA. M. BlochJ.-C. Guillot and T. Kappeler, On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS, Duke Math. J., 79 (1995), 549-604.  doi: 10.1215/S0012-7094-95-07914-9.  Google Scholar

[3]

E. BelokolosA. BobenkoV. Matveev and V. Enolskii, Algebro-geometric principles of superposition of finite-zone solutions of integrable nonlinear equations, Uspekhi Mat. Nauk, 41 (1986), 3-42.   Google Scholar

[4]

M. Berti, T. Kappeler and R. Montalto, Large KAM Tori for Arbitrary Semi-linear Perturbations of the Defocusing NLS Equation, 403, Astérisque, 2018.  Google Scholar

[5]

B. Dubrovin and I. Krichever, The Schrödinger equation in a periodic field and Riemann surfaces, Dokl. Akad. Nauk SSSR, 229 (1976), 15-18.   Google Scholar

[6]

B. Dubrovin and S. Novikov, A periodic problem for the Korteweg-de Vries and Sturm-Liouville equations. Their connection with algebraic geometry, Dokl. Akad. Nauk SSSR, 219 (1974), 531-534.   Google Scholar

[7]

L. FaddeevL. Takhtajan and V. Zakharov, Complete description of solutions of the sine-Gordon equation, Dokl. Akad. Nauk Ser. Fiz., 219 (1974), 1334-1337.   Google Scholar

[8]

J. Feldman, H. Knörrer and E. Trubowitz, Riemann Surfaces of Infinite Genus, CRM Monograph Series, 20, American Math. Soc., 2003.  Google Scholar

[9]

H. Flaschka and D. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions, Progr. Theoret. Phys., 55 (1976), 438-456.  doi: 10.1143/PTP.55.438.  Google Scholar

[10]

P. Gérard and T. Kappeler, On the integrability of the Benjamin-Ono equation on the torus, preprint, arXiv: 1905.01849. Google Scholar

[11]

P. Gérard, T. Kappeler and P. Toplaov, Sharp well-posedness results for the Benjamin-Ono equation in $H^{s}(\mathbb T, \mathbb R)$ and qualitative properties of its solutions, preprint, arXiv: 2004.04857. Google Scholar

[12]

B. Grébert and T. Kappeler, The Defocusing NLS Equation and its Normal Form, EMS series of Lectures in Mathematics, European Math. Soc., 2014. doi: 10.4171/131.  Google Scholar

[13]

T. Kappeler, P. Lohrmann and P. Topalov, On normalized differentials on families of curves of infinite genus, in Spectral Theory and Geometric Analysis, Contemp. Math, 535, American Math. Soc., 2011,109–140. doi: 10.1090/conm/535/10538.  Google Scholar

[14]

T. Kappeler and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, 2003. doi: 10.1007/978-3-662-08054-2.  Google Scholar

[15]

T. Kappeler and J. Molnar, On the wellposedness of the defocusing mKdV equation below $L^2$, SIAM J. Math. Anal., 49 (2017), 2191–2219. doi: 10.1137/16M1096979.  Google Scholar

[16]

T. Kappeler and P. Topalov, Global well-posedness of KdV in $H^{-1}(\mathbb T, \mathbb R)$, Duke Math. J., 135 (2006), 327-360.  doi: 10.1215/S0012-7094-06-13524-X.  Google Scholar

[17]

T. Kappeler and P. Topalov, On normalized differentials on hyperelliptic curves of infinite genus, J. Differential Geom., 105 (2017), 209-248.  doi: 10.4310/jdg/1486522814.  Google Scholar

[18]

T. Kappeler and P. Topalov, On an Arnold-Liouville type theorem for the focusing NLS equation, Integrable Systems and Algebraic Geometry, Vol. 1, LMS Lecture Notes Series, 458, Cambridge University Press, 2020, 265–290. Google Scholar

[19]

T. Kappeler and P. Topalov, Arnold-Liouville theorem for integrable PDEs: A case study of the focusing NLS equation, preprint, arXiv: 2002.11638. Google Scholar

[20]

T. Kappeler and Y. Widmer, On spectral properties of the L operator in the Lax pair of the sine-Gordon equation, Journal of Math. Physics, Analysis, Geometry, 14 (2018), 452-509.  doi: 10.15407/mag14.04.452.  Google Scholar

[21]

S. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, 2000.  Google Scholar

[22]

P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.  doi: 10.1002/cpa.3160210503.  Google Scholar

[23]

H. McKean, The sine-Gordon and sinh-Gordon equations on the circle, Comm. Pure Appl. Math., 34 (1981), 197-257.  doi: 10.1002/cpa.3160340204.  Google Scholar

[24]

H. P. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math., 30 (1975), 217-274.  doi: 10.1007/BF01425567.  Google Scholar

[25]

H. McKean and E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, Comm. Pure Appl. Math., 29 (1976), 143-226.  doi: 10.1002/cpa.3160290203.  Google Scholar

[26]

H. McKean and K. Vaninsky, Action-angle variables for the cubic Schrödinger equation, Comm. Pure Appl. Math., 50 (1997), 489-562.  doi: 10.1002/(SICI)1097-0312(199706)50:6<489::AID-CPA1>3.0.CO;2-4.  Google Scholar

[27]

S. Novikov, S. Manakov, L. Pitaevskii and V. Zakharov, Theory of Solitons. The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], 1984.  Google Scholar

[28]

A. Veselov and S. Novikov, Poisson brackets and complex tori, Trudy Mat. Inst. Steklov., 165 (1984), 49-61.   Google Scholar

[29]

V. Zakharov and A. Shabat, A scheme for integrating nonlinear equations of mathematical physics by the method of the inverse scattering problem I, Functional Anal. Appl., 8 (1974), 226-235.   Google Scholar

Figure 1.  Illustration of the domains $ D_n $, $ D_{-n} $, $ -D_{-n} $, $ -D_n $ for $ n = 1, 2 $
Figure 2.  Distribution of periodic eigenvalues
Figure 3.  Illustration of the sign of $\sqrt[c]{\Delta ^2-1}$
[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[2]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[3]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[4]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[5]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[6]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[7]

Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021025

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[12]

Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020370

[13]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[14]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[15]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[16]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[17]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[18]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 0.649

Article outline

Figures and Tables

[Back to Top]