
-
Previous Article
Some remarks about the centre of mass of two particles in spaces of constant curvature
- JGM Home
- This Issue
-
Next Article
Control of locomotion systems and dynamics in relative periodic orbits
Higher order normal modes
1. | Dipartimento di Matematica, Università degli Studi di Milano, v. Saldini 50, I-20133 Milano, Italy |
2. | SMRI, I-00058 Santa Marinella, Italy |
3. | Mathematik A, RWTH Aachen, D-52056 Aachen, Germany |
Normal modes are intimately related to the quadratic approximation of a potential at its hyperbolic equilibria. Here we extend the notion to the case where the Taylor expansion for the potential at a critical point starts with higher order terms, and show that such an extension shares some of the properties of standard normal modes. Some symmetric examples are considered in detail.
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Third edition. "Nauka", Moscow, 1989. |
[2] |
V. I. Arnold, Ordinary Differential Equations, Springer, 1992. |
[3] |
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, 1983. |
[4] |
J. P. Bornsen and A. E. M. van de Ven, Tangent developable orbit space of an octupole, preprint, arXiv: 1807.04817, 2018. |
[5] |
D. Cartwright and B. Sturmfels,
The number of eigenvalues of a tensor, Linear Algebra Appl., 438 (2013), 942-952.
doi: 10.1016/j.laa.2011.05.040. |
[6] |
J. F. Cariñena and A. Ramos,
A new geometric approach to Lie systems and physical applications, Acta Appl. Math., 70 (2002), 43-69.
doi: 10.1023/A:1013913930134. |
[7] |
J. F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems. A Geometric Approach, Bibliopolis, 2000. |
[8] |
Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20pp.
doi: 10.1088/1751-8121/aa98a8. |
[9] |
C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet and G. Iooss,
A simple global characterization for normal forms of singular vector fields, Physica D, 29 (1987), 95-127.
doi: 10.1016/0167-2789(87)90049-2. |
[10] |
G. Gaeta and E. Virga,
The symmetries of octupolar tensors, J. Elast., 135 (2019), 295-350.
doi: 10.1007/s10659-018-09722-8. |
[11] | |
[12] |
G. Gaeta and E. G. Virga, Octupolar order in three dimensions, Eur. Phys. J. E, 39 (2016), 113pp. |
[13] | |
[14] |
N. Kruff, J. Llibre, C. Pantazi and S. Walcher, Invariant algebraic surfaces of polynomial vector fields in dimension three, preprint, arXiv: 1907.12536, 2019. |
[15] |
L. D. Landau and E. M. Lifhsitz, Mechanics, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. |
[16] |
J. W. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] |
J. Moser,
Regularization of Kepler's problem and the averaging method on a manifold, Comm.Pure Appl. Math., 23 (1970), 609-636.
doi: 10.1002/cpa.3160230406. |
[18] |
J. Montaldi, M. Roberts and I. Stewart,
Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730.
doi: 10.1088/0951-7715/3/3/009. |
[19] |
J. Montaldi, M. Roberts and I. Stewart,
Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772.
doi: 10.1088/0951-7715/3/3/010. |
[20] |
L. Qi,
Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), 1363-1377.
doi: 10.1016/j.jmaa.2006.02.071. |
[21] |
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, (Advances in Mechanics and Mathematics, vol. 39), Springer, 2018.
doi: 10.1007/978-981-10-8058-6. |
[22] |
H. Rohrl,
A theorem on non-associative algebras and its application to differential equations, Manus. Math., 21 (1977), 181-187.
doi: 10.1007/BF01168018. |
[23] |
H. Rohrl,
Algebras and differential equations, Nagoya Math. J., 68 (1977), 59-122.
doi: 10.1017/S0027763000017876. |
[24] |
H. Rohrl,
On the zeros of polynomials over arbitrary finite-dimensional algebras, Manuscripta Math., 25 (1978), 359-390.
doi: 10.1007/BF01168049. |
[25] |
H. Rohrl,
Finite-dimensional algebras without nilpotents over algebraically closed fields, Arch. Math. (Basel), 32 (1979), 10-12.
doi: 10.1007/BF01238461. |
[26] |
H. Rohrl and S. Walcher,
Projections of polynomial vector fields and the Poincaré sphere, J. Diff. Eqs., 139 (1997), 22-40.
doi: 10.1006/jdeq.1997.3298. |
[27] |
I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1977. |
[28] |
E. Virga, Octupolar order in two dimensions, Eur.Phys. J. E, 38 (2015), 63pp. |
[29] |
A. Weinstein,
Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973), 47-57.
doi: 10.1007/BF01405263. |
[30] |
S. Walcher, Algebras and Differential Equations, Hadronic Press, 1991.
![]() ![]() |
[31] |
S. Walcher,
Eigenvectors of tensors – a primer, Acta Appl. Math., 162 (2019), 165-183.
doi: 10.1007/s10440-018-0225-7. |
show all references
Dedicated to James Montaldi on his 25+something anniversary
References:
[1] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Third edition. "Nauka", Moscow, 1989. |
[2] |
V. I. Arnold, Ordinary Differential Equations, Springer, 1992. |
[3] |
V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, 1983. |
[4] |
J. P. Bornsen and A. E. M. van de Ven, Tangent developable orbit space of an octupole, preprint, arXiv: 1807.04817, 2018. |
[5] |
D. Cartwright and B. Sturmfels,
The number of eigenvalues of a tensor, Linear Algebra Appl., 438 (2013), 942-952.
doi: 10.1016/j.laa.2011.05.040. |
[6] |
J. F. Cariñena and A. Ramos,
A new geometric approach to Lie systems and physical applications, Acta Appl. Math., 70 (2002), 43-69.
doi: 10.1023/A:1013913930134. |
[7] |
J. F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems. A Geometric Approach, Bibliopolis, 2000. |
[8] |
Y. Chen, L. Qi and E. G. Virga, Octupolar tensors for liquid crystals, J. Phys. A, 51 (2018), 025206, 20pp.
doi: 10.1088/1751-8121/aa98a8. |
[9] |
C. Elphick, E. Tirapegui, M. E. Brachet, P. Coullet and G. Iooss,
A simple global characterization for normal forms of singular vector fields, Physica D, 29 (1987), 95-127.
doi: 10.1016/0167-2789(87)90049-2. |
[10] |
G. Gaeta and E. Virga,
The symmetries of octupolar tensors, J. Elast., 135 (2019), 295-350.
doi: 10.1007/s10659-018-09722-8. |
[11] | |
[12] |
G. Gaeta and E. G. Virga, Octupolar order in three dimensions, Eur. Phys. J. E, 39 (2016), 113pp. |
[13] | |
[14] |
N. Kruff, J. Llibre, C. Pantazi and S. Walcher, Invariant algebraic surfaces of polynomial vector fields in dimension three, preprint, arXiv: 1907.12536, 2019. |
[15] |
L. D. Landau and E. M. Lifhsitz, Mechanics, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1960. |
[16] |
J. W. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] |
J. Moser,
Regularization of Kepler's problem and the averaging method on a manifold, Comm.Pure Appl. Math., 23 (1970), 609-636.
doi: 10.1002/cpa.3160230406. |
[18] |
J. Montaldi, M. Roberts and I. Stewart,
Existence of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730.
doi: 10.1088/0951-7715/3/3/009. |
[19] |
J. Montaldi, M. Roberts and I. Stewart,
Stability of nonlinear normal modes in symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 731-772.
doi: 10.1088/0951-7715/3/3/010. |
[20] |
L. Qi,
Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), 1363-1377.
doi: 10.1016/j.jmaa.2006.02.071. |
[21] |
L. Qi, H. Chen and Y. Chen, Tensor Eigenvalues and Their Applications, (Advances in Mechanics and Mathematics, vol. 39), Springer, 2018.
doi: 10.1007/978-981-10-8058-6. |
[22] |
H. Rohrl,
A theorem on non-associative algebras and its application to differential equations, Manus. Math., 21 (1977), 181-187.
doi: 10.1007/BF01168018. |
[23] |
H. Rohrl,
Algebras and differential equations, Nagoya Math. J., 68 (1977), 59-122.
doi: 10.1017/S0027763000017876. |
[24] |
H. Rohrl,
On the zeros of polynomials over arbitrary finite-dimensional algebras, Manuscripta Math., 25 (1978), 359-390.
doi: 10.1007/BF01168049. |
[25] |
H. Rohrl,
Finite-dimensional algebras without nilpotents over algebraically closed fields, Arch. Math. (Basel), 32 (1979), 10-12.
doi: 10.1007/BF01238461. |
[26] |
H. Rohrl and S. Walcher,
Projections of polynomial vector fields and the Poincaré sphere, J. Diff. Eqs., 139 (1997), 22-40.
doi: 10.1006/jdeq.1997.3298. |
[27] |
I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1977. |
[28] |
E. Virga, Octupolar order in two dimensions, Eur.Phys. J. E, 38 (2015), 63pp. |
[29] |
A. Weinstein,
Normal modes for nonlinear Hamiltonian systems, Invent. Math., 20 (1973), 47-57.
doi: 10.1007/BF01405263. |
[30] |
S. Walcher, Algebras and Differential Equations, Hadronic Press, 1991.
![]() ![]() |
[31] |
S. Walcher,
Eigenvectors of tensors – a primer, Acta Appl. Math., 162 (2019), 165-183.
doi: 10.1007/s10440-018-0225-7. |



Max | Min | NCP | |||
1 | 1 | 0 | 0 | 0 | 2 |
2 | 2 | 2 | 0 | 0 | 6 |
3 | 3 | 4 | 0 | 0 | 10 |
3 | 3 | 0 | 2 | 0 | 8 |
4 | 4 | 6 | 0 | 0 | 14 |
4 | 4 | 2 | 2 | 0 | 12 |
4 | 4 | 0 | 0 | 2 | 10 |
Max | Min | NCP | |||
1 | 1 | 0 | 0 | 0 | 2 |
2 | 2 | 2 | 0 | 0 | 6 |
3 | 3 | 4 | 0 | 0 | 10 |
3 | 3 | 0 | 2 | 0 | 8 |
4 | 4 | 6 | 0 | 0 | 14 |
4 | 4 | 2 | 2 | 0 | 12 |
4 | 4 | 0 | 0 | 2 | 10 |
[1] |
Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817 |
[2] |
Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703 |
[3] |
Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007 |
[4] |
V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277 |
[5] |
Răzvan M. Tudoran, Anania Gîrban. On the Hamiltonian dynamics and geometry of the Rabinovich system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 789-823. doi: 10.3934/dcdsb.2011.15.789 |
[6] |
Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050 |
[7] |
Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599 |
[8] |
Xing Huang, Wujun Lv. Stochastic functional Hamiltonian system with singular coefficients. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1257-1273. doi: 10.3934/cpaa.2020060 |
[9] |
Chenxi Guo, Guillaume Bal. Reconstruction of complex-valued tensors in the Maxwell system from knowledge of internal magnetic fields. Inverse Problems and Imaging, 2014, 8 (4) : 1033-1051. doi: 10.3934/ipi.2014.8.1033 |
[10] |
Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375 |
[11] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control and Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051 |
[12] |
Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555 |
[13] |
Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443 |
[14] |
Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 72-77. |
[15] |
Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009 |
[16] |
Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053 |
[17] |
Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053 |
[18] |
Junmin Yang, Maoan Han. On the number of limit cycles of a cubic Near-Hamiltonian system. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 827-840. doi: 10.3934/dcds.2009.24.827 |
[19] |
Jian Zhang, Wen Zhang, Xianhua Tang. Ground state solutions for Hamiltonian elliptic system with inverse square potential. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4565-4583. doi: 10.3934/dcds.2017195 |
[20] |
Zhiping Fan, Duanzhi Zhang. Minimal period solutions in asymptotically linear Hamiltonian system with symmetries. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2095-2124. doi: 10.3934/dcds.2020354 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]