-
Previous Article
Symmetry actuated closed-loop Hamiltonian systems
- JGM Home
- This Issue
-
Next Article
Linearization of the higher analogue of Courant algebroids
Lagrangian reduction of nonholonomic discrete mechanical systems by stages
1. | Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A., Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, Argentina |
2. | Depto. de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 116 entre 47 y 48, 2$ ^{\underline{o}} $ piso, La Plata, Buenos Aires, 1900, Argentina, Centro de Matemática de La Plata (CMaLP) |
3. | Depto. de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 50 y 115, La Plata, Buenos Aires, 1900, Argentina, Centro de Matemática de La Plata (CMaLP) |
In this work we introduce a category $ \mathfrak{L D P}_{d} $ of discrete-time dynamical systems, that we call discrete Lagrange–D'Alembert–Poincaré systems, and study some of its elementary properties. Examples of objects of $ \mathfrak{L D P}_{d} $ are nonholonomic discrete mechanical systems as well as their lagrangian reductions and, also, discrete Lagrange-Poincaré systems. We also introduce a notion of symmetry group for objects of $ \mathfrak{L D P}_{d} $ and a process of reduction when symmetries are present. This reduction process extends the reduction process of discrete Lagrange–Poincaré systems as well as the one defined for nonholonomic discrete mechanical systems. In addition, we prove that, under some conditions, the two-stage reduction process (first by a closed and normal subgroup of the symmetry group and, then, by the residual symmetry group) produces a system that is isomorphic in $ \mathfrak{L D P}_{d} $ to the system obtained by a one-stage reduction by the full symmetry group.
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co. Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. Google Scholar |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, vol. 24, Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[4] |
M. Castrillón López and T. S. Ratiu,
Reduction in principal bundles: Covariant Lagrange-Poincaré equations, Comm. Math. Phys., 236 (2003), 223-250.
doi: 10.1007/s00220-003-0797-5. |
[5] |
H. Cendra and V. A. Díaz,
Lagrange-d'Alembert-Poincaré equations by several stages, J. Geom. Mech., 10 (2018), 1-41.
doi: 10.3934/jgm.2018001. |
[6] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction and nonholonomic systems, in Mathematics Unlimited—2001 and Beyond, Springer, Berlin, 2001,221–273. |
[7] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), 108 pp.
doi: 10.1090/memo/0722. |
[8] |
J. Cortés and S. Martínez,
Non-holonomic integrators, Nonlinearity, 14 (2001), 1365-1392.
doi: 10.1088/0951-7715/14/5/322. |
[9] |
J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics, vol. 1793, Springer-Verlag, Berlin, 2002.
doi: 10.1007/b84020. |
[10] |
D. M. de Diego and R. S. M. de Almagro,
Variational order for forced Lagrangian systems, Nonlinearity, 31 (2018), 3814-3846.
doi: 10.1088/1361-6544/aac5a6. |
[11] |
Y. N. Fedorov and D. V. Zenkov,
Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241.
doi: 10.1088/0951-7715/18/5/017. |
[12] |
J. Fernández, S. Graiff Zurita and S. Grillo, Error analysis of forced discrete mechanical systems, work-in-progress, 2020. Google Scholar |
[13] |
J. Fernández, C. Tori and M. Zuccalli,
Lagrangian reduction of nonholonomic discrete mechanical systems, J. Geom. Mech., 2 (2010), 69-111.
doi: 10.3934/jgm.2010.2.69. |
[14] |
J. Fernández, C. Tori and M. Zuccalli,
Lagrangian reduction of discrete mechanical systems by stages, J. Geom. Mech., 8 (2016), 35-70.
doi: 10.3934/jgm.2016.8.35. |
[15] |
J. Fernández and M. Zuccalli,
A geometric approach to discrete connections on principal bundles, J. Geom. Mech., 5 (2013), 433-444.
doi: 10.3934/jgm.2013.5.433. |
[16] |
L. C. García-Naranjo and F. Jiménez,
The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators, Discrete Contin. Dyn. Syst., 37 (2017), 4249-4275.
doi: 10.3934/dcds.2017182. |
[17] |
H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley Publishing Co., Reading, Mass., 1980 |
[18] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006 |
[19] |
D. Iglesias, J. C. Marrero, D. M. de Diego and E. Martínez,
Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 221-276.
doi: 10.1007/s00332-007-9012-8. |
[20] |
D. Iglesias, J. C. Marrero, D. Martín de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 049, 28 pp. Google Scholar |
[21] |
S. M. Jalnapurkar, M. Leok, J. E. Marsden and M. West,
Discrete Routh reduction, J. Phys. A, 39 (2006), 5521-5544.
doi: 10.1088/0305-4470/39/19/S12. |
[22] |
J. M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21752-9. |
[23] |
J. C. Marrero, D. Martín de Diego and E. Martínez,
Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.
doi: 10.1088/0951-7715/19/6/006. |
[24] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[25] |
J. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[26] |
J. E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, vol. 1913, Springer, Berlin, 2007. |
[27] |
R. McLachlan and M. Perlmutter,
Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.
doi: 10.1007/s00332-005-0698-1. |
[28] |
K. R. Meyer, Symmetries and integrals in mechanics, in Dynamical Systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973,259–272. |
[29] |
G. W. Patrick and C. Cuell,
Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3. |
[30] |
S. Smale,
Topology and mechanics. Ⅰ, Invent. Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778. |
[31] |
S. Smale,
Topology and mechanics. Ⅱ. The planar $n$-body problem, Invent. Math., 11 (1970), 45-64.
doi: 10.1007/BF01389805. |
[32] |
G. K. Suslov, Theoretical Mechanics, Gostekhizdat, Moscow, 1946. Google Scholar |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co. Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. Google Scholar |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, vol. 24, Springer-Verlag, New York, 2003.
doi: 10.1007/b97376. |
[4] |
M. Castrillón López and T. S. Ratiu,
Reduction in principal bundles: Covariant Lagrange-Poincaré equations, Comm. Math. Phys., 236 (2003), 223-250.
doi: 10.1007/s00220-003-0797-5. |
[5] |
H. Cendra and V. A. Díaz,
Lagrange-d'Alembert-Poincaré equations by several stages, J. Geom. Mech., 10 (2018), 1-41.
doi: 10.3934/jgm.2018001. |
[6] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction and nonholonomic systems, in Mathematics Unlimited—2001 and Beyond, Springer, Berlin, 2001,221–273. |
[7] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), 108 pp.
doi: 10.1090/memo/0722. |
[8] |
J. Cortés and S. Martínez,
Non-holonomic integrators, Nonlinearity, 14 (2001), 1365-1392.
doi: 10.1088/0951-7715/14/5/322. |
[9] |
J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics, vol. 1793, Springer-Verlag, Berlin, 2002.
doi: 10.1007/b84020. |
[10] |
D. M. de Diego and R. S. M. de Almagro,
Variational order for forced Lagrangian systems, Nonlinearity, 31 (2018), 3814-3846.
doi: 10.1088/1361-6544/aac5a6. |
[11] |
Y. N. Fedorov and D. V. Zenkov,
Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241.
doi: 10.1088/0951-7715/18/5/017. |
[12] |
J. Fernández, S. Graiff Zurita and S. Grillo, Error analysis of forced discrete mechanical systems, work-in-progress, 2020. Google Scholar |
[13] |
J. Fernández, C. Tori and M. Zuccalli,
Lagrangian reduction of nonholonomic discrete mechanical systems, J. Geom. Mech., 2 (2010), 69-111.
doi: 10.3934/jgm.2010.2.69. |
[14] |
J. Fernández, C. Tori and M. Zuccalli,
Lagrangian reduction of discrete mechanical systems by stages, J. Geom. Mech., 8 (2016), 35-70.
doi: 10.3934/jgm.2016.8.35. |
[15] |
J. Fernández and M. Zuccalli,
A geometric approach to discrete connections on principal bundles, J. Geom. Mech., 5 (2013), 433-444.
doi: 10.3934/jgm.2013.5.433. |
[16] |
L. C. García-Naranjo and F. Jiménez,
The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators, Discrete Contin. Dyn. Syst., 37 (2017), 4249-4275.
doi: 10.3934/dcds.2017182. |
[17] |
H. Goldstein, Classical Mechanics, 2nd edition, Addison-Wesley Publishing Co., Reading, Mass., 1980 |
[18] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, 2nd edition, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006 |
[19] |
D. Iglesias, J. C. Marrero, D. M. de Diego and E. Martínez,
Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 221-276.
doi: 10.1007/s00332-007-9012-8. |
[20] |
D. Iglesias, J. C. Marrero, D. Martín de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 049, 28 pp. Google Scholar |
[21] |
S. M. Jalnapurkar, M. Leok, J. E. Marsden and M. West,
Discrete Routh reduction, J. Phys. A, 39 (2006), 5521-5544.
doi: 10.1088/0305-4470/39/19/S12. |
[22] |
J. M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21752-9. |
[23] |
J. C. Marrero, D. Martín de Diego and E. Martínez,
Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.
doi: 10.1088/0951-7715/19/6/006. |
[24] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[25] |
J. Marsden and A. Weinstein,
Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys., 5 (1974), 121-130.
doi: 10.1016/0034-4877(74)90021-4. |
[26] |
J. E. Marsden, G. Misiołek, J.-P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages, Lecture Notes in Mathematics, vol. 1913, Springer, Berlin, 2007. |
[27] |
R. McLachlan and M. Perlmutter,
Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.
doi: 10.1007/s00332-005-0698-1. |
[28] |
K. R. Meyer, Symmetries and integrals in mechanics, in Dynamical Systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), Academic Press, New York, 1973,259–272. |
[29] |
G. W. Patrick and C. Cuell,
Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264.
doi: 10.1007/s00211-009-0245-3. |
[30] |
S. Smale,
Topology and mechanics. Ⅰ, Invent. Math., 10 (1970), 305-331.
doi: 10.1007/BF01418778. |
[31] |
S. Smale,
Topology and mechanics. Ⅱ. The planar $n$-body problem, Invent. Math., 11 (1970), 45-64.
doi: 10.1007/BF01389805. |
[32] |
G. K. Suslov, Theoretical Mechanics, Gostekhizdat, Moscow, 1946. Google Scholar |
[1] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[2] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[3] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[4] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[5] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[6] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[7] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[8] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[9] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[10] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[11] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[12] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[13] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[14] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[15] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[16] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[17] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[18] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[19] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[20] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
2019 Impact Factor: 0.649
Tools
Article outline
[Back to Top]