-
Previous Article
Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model
- JGM Home
- This Issue
- Next Article
A Lagrangian approach to extremal curves on Stiefel manifolds
1. | Institute of Mathematics, Julius-Maximilians-Universität Würzburg, Germany |
2. | Department of Mathematics, University of Bergen, Norway |
3. | Institute of Systems and Robotics, and Department of Mathematics, University of Coimbra, Portugal |
A unified framework for studying extremal curves on real Stiefel manifolds is presented. We start with a smooth one-parameter family of pseudo-Riemannian metrics on a product of orthogonal groups acting transitively on Stiefel manifolds. In the next step Euler-Langrange equations for a whole class of extremal curves on Stiefel manifolds are derived. This includes not only geodesics with respect to different Riemannian metrics, but so-called quasi-geodesics and smooth curves of constant geodesic curvature, as well. It is shown that they all can be written in closed form. Our results are put into perspective to recent related work where a Hamiltonian rather than a Lagrangian approach was used. For some specific values of the parameter we recover certain well-known results.
References:
[1] |
P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.
doi: 10.1515/9781400830244.![]() ![]() |
[2] |
R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens and M. Shub,
Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal., 22 (2002), 359-390.
doi: 10.1093/imanum/22.3.359. |
[3] |
A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2020.
doi: 10.1017/9781108677325.![]() ![]() |
[4] |
A. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, in Analysis and Geometry in Control Theory and Its Applications, Springer, Cham, 2015, 35–64.
doi: 10.1007/978-3-319-06917-3_2. |
[5] |
A. M. Bloch, Nonholonomic Mechanics and Control, 2nd edition, Springer, New York, 2015.
doi: 10.1007/978-1-4939-3017-3. |
[6] |
A. M. Bloch, J. E. Marsden and D. V. Zenkov,
Nonholonomic dynamics, Notices Amer. Math. Soc., 52 (2005), 324-333.
|
[7] |
A. M. Bloch, P. E. Crouch and A. K. Sanyal,
A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276.
doi: 10.1088/0951-7715/19/10/002. |
[8] |
R. W. Brockett, Finite dimensional linear systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015.
doi: 10.1137/1.9781611973884. |
[9] |
A. Edelman, T. A. Arias and S. T. Smith,
The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), 303-353.
doi: 10.1137/S0895479895290954. |
[10] |
J. Faraut, Analysis on Lie Groups. An Introduction, Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511755170. |
[11] |
Y. N. Fedorov and B. Jovanović,
Geodesic flows and Neumann systems on Stiefel varieties: Geometry and integrability, Math. Z., 270 (2012), 659-698.
doi: 10.1007/s00209-010-0818-y. |
[12] |
I. Gohberg, P. Lancaster and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser Verlag, Basel, 2005.
doi: 10.1007/b137517. |
[13] |
K. Hüper, M. Kleinsteuber and F. Silva Leite,
Rolling Stiefel manifolds, Internat. J. Systems Sci., 39 (2008), 881-887.
doi: 10.1080/00207720802184717. |
[14] |
K. Hüper, I. Markina and F. Silva Leite, An extrinsic approach to sub-Riemannian geodesics on the orthogonal group, in CONTROLO 2020, Proceedings of the 14th APCA International Conference on Automatic Control and Soft Computing, vol. 695, LNEE, Bragança, Portugal, Springer 2020,274–283.
doi: 10.1007/978-3-030-58653-9_26. |
[15] |
K. Hüper and F Ullrich, Real Stiefel manifolds: An extrinsic point of view, In 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018, 13–18.
doi: 10.1109/CONTROLO.2018.8514292. |
[16] |
I. I. Hussein and A. M. Bloch,
Optimal control of underactuated nonholonomic mechanical systems, IEEE Trans. Automat. Control, 53 (2008), 668-682.
doi: 10.1109/TAC.2008.919853. |
[17] |
V. Jurdjevic, Optimal Control and Geometry: Integrable Systems, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316286852.![]() ![]() |
[18] |
V. Jurdjevic, I. Markina and F. Silva Leite, Extremal curves on Stiefel and Grassmann manifolds, Journal of Geometric Analysis, 30 (2020), 3948–3978.
doi: 10.1007/s12220-019-00223-1. |
[19] |
V. Jurdjevic, F. Silva Leite and K. Krakowski, The geometry of quasi-geodesics on Stiefel manifolds, in 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018,213–218.
doi: 10.1109/CONTROLO.2018.8514270. |
[20] |
K. A. Krakowski, L. Machado, F. Silva Leite and J. Batista,
A modified Casteljau algorithm to solve interpolation problems on Stiefel manifolds, J. Comput. Appl. Math., 311 (2017), 84-99.
doi: 10.1016/j.cam.2016.07.018. |
[21] |
R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/surv/091. |
[22] |
Y. Nishimori and S. Akaho,
Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold, Neurocomputing, 67 (2005), 106-135.
doi: 10.1016/j.neucom.2004.11.035. |
[23] |
A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994. |
[24] |
J. Roe, Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/ulect/031. |
[25] |
J. Roe,
What is $\dots$ a coarse space?, Notices Amer. Math. Soc., 53 (2006), 668-669.
|
[26] |
E. Stiefel,
Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv., 8 (1935), 305-353.
|
[27] |
F. Ullrich, Rolling maps for real Stiefel manifolds, Master's thesis, Institute of Mathematics, Julius-Maximilians-Universität Würzburg, Germany, 2017. Google Scholar |
[28] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol. 3, Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4612-5020-3. |
show all references
References:
[1] |
P.-A. Absil, R. Mahony and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, 2008.
doi: 10.1515/9781400830244.![]() ![]() |
[2] |
R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens and M. Shub,
Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer. Anal., 22 (2002), 359-390.
doi: 10.1093/imanum/22.3.359. |
[3] |
A. Agrachev, D. Barilari and U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge University Press, Cambridge, 2020.
doi: 10.1017/9781108677325.![]() ![]() |
[4] |
A. Bloch, L. Colombo, R. Gupta and D. Martín de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, in Analysis and Geometry in Control Theory and Its Applications, Springer, Cham, 2015, 35–64.
doi: 10.1007/978-3-319-06917-3_2. |
[5] |
A. M. Bloch, Nonholonomic Mechanics and Control, 2nd edition, Springer, New York, 2015.
doi: 10.1007/978-1-4939-3017-3. |
[6] |
A. M. Bloch, J. E. Marsden and D. V. Zenkov,
Nonholonomic dynamics, Notices Amer. Math. Soc., 52 (2005), 324-333.
|
[7] |
A. M. Bloch, P. E. Crouch and A. K. Sanyal,
A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276.
doi: 10.1088/0951-7715/19/10/002. |
[8] |
R. W. Brockett, Finite dimensional linear systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015.
doi: 10.1137/1.9781611973884. |
[9] |
A. Edelman, T. A. Arias and S. T. Smith,
The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20 (1998), 303-353.
doi: 10.1137/S0895479895290954. |
[10] |
J. Faraut, Analysis on Lie Groups. An Introduction, Cambridge University Press, Cambridge, 2008.
doi: 10.1017/CBO9780511755170. |
[11] |
Y. N. Fedorov and B. Jovanović,
Geodesic flows and Neumann systems on Stiefel varieties: Geometry and integrability, Math. Z., 270 (2012), 659-698.
doi: 10.1007/s00209-010-0818-y. |
[12] |
I. Gohberg, P. Lancaster and L. Rodman, Indefinite Linear Algebra and Applications, Birkhäuser Verlag, Basel, 2005.
doi: 10.1007/b137517. |
[13] |
K. Hüper, M. Kleinsteuber and F. Silva Leite,
Rolling Stiefel manifolds, Internat. J. Systems Sci., 39 (2008), 881-887.
doi: 10.1080/00207720802184717. |
[14] |
K. Hüper, I. Markina and F. Silva Leite, An extrinsic approach to sub-Riemannian geodesics on the orthogonal group, in CONTROLO 2020, Proceedings of the 14th APCA International Conference on Automatic Control and Soft Computing, vol. 695, LNEE, Bragança, Portugal, Springer 2020,274–283.
doi: 10.1007/978-3-030-58653-9_26. |
[15] |
K. Hüper and F Ullrich, Real Stiefel manifolds: An extrinsic point of view, In 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018, 13–18.
doi: 10.1109/CONTROLO.2018.8514292. |
[16] |
I. I. Hussein and A. M. Bloch,
Optimal control of underactuated nonholonomic mechanical systems, IEEE Trans. Automat. Control, 53 (2008), 668-682.
doi: 10.1109/TAC.2008.919853. |
[17] |
V. Jurdjevic, Optimal Control and Geometry: Integrable Systems, Cambridge University Press, Cambridge, 2016.
doi: 10.1017/CBO9781316286852.![]() ![]() |
[18] |
V. Jurdjevic, I. Markina and F. Silva Leite, Extremal curves on Stiefel and Grassmann manifolds, Journal of Geometric Analysis, 30 (2020), 3948–3978.
doi: 10.1007/s12220-019-00223-1. |
[19] |
V. Jurdjevic, F. Silva Leite and K. Krakowski, The geometry of quasi-geodesics on Stiefel manifolds, in 13th APCA International Conference on Automatic Control and Soft Computing (Controlo 2018), Ponta Delgada, Azores, Portugal, 2018,213–218.
doi: 10.1109/CONTROLO.2018.8514270. |
[20] |
K. A. Krakowski, L. Machado, F. Silva Leite and J. Batista,
A modified Casteljau algorithm to solve interpolation problems on Stiefel manifolds, J. Comput. Appl. Math., 311 (2017), 84-99.
doi: 10.1016/j.cam.2016.07.018. |
[21] |
R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, American Mathematical Society, Providence, RI, 2002.
doi: 10.1090/surv/091. |
[22] |
Y. Nishimori and S. Akaho,
Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold, Neurocomputing, 67 (2005), 106-135.
doi: 10.1016/j.neucom.2004.11.035. |
[23] |
A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth Verlag GmbH, Leipzig, 1994. |
[24] |
J. Roe, Lectures on Coarse Geometry, American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/ulect/031. |
[25] |
J. Roe,
What is $\dots$ a coarse space?, Notices Amer. Math. Soc., 53 (2006), 668-669.
|
[26] |
E. Stiefel,
Richtungsfelder und Fernparallelismus in n-dimensionalen Mannigfaltigkeiten, Comment. Math. Helv., 8 (1935), 305-353.
|
[27] |
F. Ullrich, Rolling maps for real Stiefel manifolds, Master's thesis, Institute of Mathematics, Julius-Maximilians-Universität Würzburg, Germany, 2017. Google Scholar |
[28] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications, vol. 3, Springer-Verlag, New York, 1985.
doi: 10.1007/978-1-4612-5020-3. |
[1] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[2] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[3] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[4] |
Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325 |
[5] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[6] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[7] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[8] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[9] |
Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327 |
[10] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[11] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[12] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[13] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[14] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[15] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[16] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[17] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[18] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[19] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[20] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
2019 Impact Factor: 0.649
Tools
Article outline
[Back to Top]