[1]
|
A. A. Agrachëv and R. V. Gamkrelidze, Symplectic geometry for optimal control, in Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, Dekker, New York, 1990,263-277.
|
[2]
|
T. Bakir, B. Bonnard, L. Bourdin and J. Rouot, Direct and indirect methods to optimize the muscular force response to a pulse train of electrical stimulation, in progress.
|
[3]
|
T. Bakir, B. Bonnard, L. Bourdin and J. Rouot, Pontryagin-type conditions for optimal muscular force response to functional electrical stimulations, J. Optim. Theory Appl., 184 (2020), 581-602.
doi: 10.1007/s10957-019-01599-4.
|
[4]
|
T. Bakir, B. Bonnard and S. Othman, Predictive control based on nonlinear observer for muscular force and fatigue model, 2018 Annual American Control Conference (ACC), Milwaukee, WI, 2018, 2157-2162.
doi: 10.23919/ACC.2018.8430962.
|
[5]
|
T. Bakir, B. Bonnard and J. Rouot, A case study of optimal input-output system with sampled-data control: Ding et al. force and fatigue muscular control model, Netw. Heterog. Media, 14 (2019), 79-100.
doi: 10.3934/nhm.2019005.
|
[6]
|
G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Ill., 1946.
|
[7]
|
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathematics & Applications, 40, Springer-Verlag, Berlin, 2003.
|
[8]
|
B. Bonnard and I. Kupka, Generic properties of singular trajectories, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 167-186.
doi: 10.1016/S0294-1449(97)80143-6.
|
[9]
|
U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Mathematics & Applications, 43, Springer-Verlag, Berlin, 2004.
|
[10]
|
N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, in Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-540-89394-3.
|
[11]
|
L. Bourdin and G. Dhar, Continuity/constancy of the Hamiltonian function in a Pontryagin maximum principle for optimal sampled-data control problems with free sampling times, Math. Control Signals Systems, 31 (2019), 503-544.
doi: 10.1007/s00498-019-00247-6.
|
[12]
|
L. Bourdin and E. Trélat, Optimal sampled-data control, and generalizations on time scales, Math. Control Relat. Fields, 6 (2016), 53-94.
doi: 10.3934/mcrf.2016.6.53.
|
[13]
|
P. Brunovský, A classification of linear controllable systems, Kybernetika (Prague), 6 (1970), 173-188.
|
[14]
|
J.-B. Caillau, O. Cots and J. Gergaud, Differential continuation for regular optimal control problems, Optim. Methods Softw., 27 (2012), 177-196.
doi: 10.1080/10556788.2011.593625.
|
[15]
|
J. Ding, A. S. Wexler and S. A. Binder-Macleod, A predictive fatigue model. Ⅰ. Predicting the effect of stimulation frequency and pattern on fatigue, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 48-58.
doi: 10.1109/TNSRE.2002.1021586.
|
[16]
|
J. Ding, A. S. Wexler and S. A. Binder-Macleod, A predictive fatigue model. Ⅱ. Predicting the effect of resting times on fatigue, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10 (2002), 59-67.
doi: 10.1109/TNSRE.2002.1021587.
|
[17]
|
J. Ding, A. S. Wexler and S. A. Binder-Macleod, Development of a mathematical model that predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000), 917-925.
doi: 10.1152/jappl.2000.88.3.917.
|
[18]
|
B. D. Doll, N. A. Kirsch and N. Sharma, Optimization of a stimulation train based on a predictive model of muscle force and fatigue, IFAC-PapersOnLine, 48 (2015), 338-342.
doi: 10.1016/j.ifacol.2015.10.162.
|
[19]
|
R. V. Gamkrelidze, Discovery of the maximum principle, J. Dynam. Control Systems, 5 (1999), 437-451.
doi: 10.1023/A:1021783020548.
|
[20]
|
I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963.
|
[21]
|
R. Gesztelyi, J. Zsuga, A. Kemeny-Beke, B. Varga, B. Juhasz and A. Tosaki, The Hill equation and the origin of quantitative pharmacology, Arch. Hist. Exact Sci., 66 (2012), 427-438.
doi: 10.1007/s00407-012-0098-5.
|
[22]
|
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/034.
|
[23]
|
R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automatic Control, AC-22 (1977), 728-740.
doi: 10.1109/tac.1977.1101601.
|
[24]
|
A. Isidori, Non-Linear Control Systems, Communications and Control Engineering Series, Springer-Verlag, Berlin, 1995.
doi: 10.1007/978-1-84628-615-5.
|
[25]
|
E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Robert E. Kreiger Publishing Co., Inc., Melbourne, FL, 1986.
|
[26]
|
M. S. Marion, Predicting Fatigue During Electrically Stimulated Non-Isometric Contractions, Ph.D thesis, University of California Davis, 2010.
|
[27]
|
M. S. Marion, A. S. Wexler and M. L. Hull, Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration, J. Neuroengineering Rehab., 10 (2013).
doi: 10.1186/1743-0003-10-13.
|
[28]
|
V. Renault, M. Thieullen and E. Trélat, Minimal time spiking in various ChR2-controlled neuron models, J. Math. Biol., 76 (2018), 567-608.
doi: 10.1007/s00285-017-1101-1.
|
[29]
|
H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples, Interdisciplinary Applied Mathematics, 38, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2.
|
[30]
|
H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Differential Equations, 12 (1972), 95-116.
doi: 10.1016/0022-0396(72)90007-1.
|
[31]
|
R. Vinter, Optimal Control, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2000.
|